Molar Quantitation of Hepatic Metabolites In Vivo in Proton-decoupled, Nuclear Overhauser Effect Enhanced 31P NMR Spectra Localized by Three-dimensional Chemical Shift Imaging

Department of Nuclear Magnetic Resonance and Medical Spectroscopy, Fox Chase Cancer Center, Philadelphia, PA 19111, USA

INTRODUCTION

31P NMR has been used to study a variety of diffuse and focal hepatic diseases. The information available in hepatic 31P NMR has, however, been limited by the inability to resolve individual components of the phosphomonooester (PME) and phosphodiester (PDE) regions of the spectrum. Proton-decoupling of the 31P acquisition provides a means to improve resolution within these regions and has been demonstrated in studies of human liver as well as in brain and muscle. We have recently shown that proton-decoupling, along with nuclear Overhauser effect (NOE) enhancement to improve signal-to-noise ratio (S/N), permits classification of the composition of the PME and PDE regions in in vivo 31P spectra of human lymphomas.

Another limitation in extracting information about hepatic metabolites using 31P NMR is the large, broad phospholipid peak centered in the PDE region and extending to underlie the PME, Pi and γ-NTP regions. This broad resonance causes uncertainty in spectral fitting and peak intensity analyses because its position, linewidth and lineshape are unknown. Attempts to remove the broad resonance by the use of convolution difference (CD) are not entirely satisfactory because CD affects the intensities of all metabolites (including NTPs), and the choice of CD parameters is somewhat subjective. Moreover, phospholipid resonances are likely to be affected by proton decoupling and NOE enhancement, so their potential variation in different subjects or diseases is another source of concern. Recently, McNamara et al. demonstrated effective phospholipid saturation in brain spectra by applying an off-resonance saturation pulse, obviating the need to remove the broad component in post-processing.

A third limitation in studies of hepatic diseases using 31P NMR is the difficulty in quantitating metabolite concentrations. As a result, the intensity of the 31P NMR signal from a metabolite (or group of metabolites in the case of PMEs and PDEs) is typically expressed as a ratio to that of another metabolite. If the two metabolites are changing in the same direction, or if all metabolite concentrations are decreasing in parallel (as might occur in hepatic replacement disorders), then one would miss the opportunity to characterize the disease and/or obtain a diagnostic discriminant by 31P NMR. Molar quantitation of hepatic metabolites in vivo has been reported and has been attempted in three clinical studies.

To obtain molar concentrations in proton-decoupled 31P spectra requires an accurate definition of the volume of tissue, knowledge of the T_1 of the metabolite signals, a correction for B_1 magnetic field inhomogeneity in the sensitive region of the surface coil, a correction for variations in coil loading and receiver gain, a correction for NOE signal enhancement and a correction for the intervoxel signal contamination (point-spread effect inherent
in phase-encoding used to localize spectra with chemical shift imaging (CSI).39 We report the development of procedures to obtain molar quantitation of hepatic metabolites in proton-decoupled, NOE-enhanced, phospholipid-saturated 31P MR spectra obtained with surface probes and localized in three dimensions using MRI-directed CSI.

EXPERIMENTAL

Instrumentation and 31P MRS

Twelve healthy adults (five males, seven females, aged 25–60) participated in these studies. No attempt was made to modify or control the diet of the volunteers before MR spectroscopy was performed and they were not fasting; however, subjects were studied at 4–8 h post-prandial to avoid meal-induced effects on the 31P metabolites.34 Studies were done in a Helicon 1.5 T clinical imager/spectrometer (Siemens AG, Erlangen, Germany). The subject was positioned supine and a dual-tuned surface coil placed laterally over the liver. The coil assembly consisted of a circular 15 cm diameter 31P coil and a larger 18 x 22 cm 31P coil as shown in Fig. 1. The 1H coil was in a figure-8 or butterfly configuration, and was curved on a 30 cm radius to permit apposition to the subject’s right side. The proton element was used for MR imaging, shimming and proton-decoupling. MR images of 10 mm thickness were obtained in nine slices in each of three dimensions using a gradient echo method with TR=310 ms and TE=15 ms. Shimming was initially performed by manual adjustment of lower- and higher-order shim currents and more recently by automatic adjustment of these currents using an autoshimming algorithm based on three-dimensional 1H CSI.41,42 The linewidth at half height of the water resonance of the nonlocalized 1H spectrum was typically 20–40 Hz. Nonlocalized 31P spectra were collected with and without 1H-decoupling to ensure proper functioning of the decoupler. They were obtained with 250 μs rectangular pulses, TR=1 s and 64 acquisitions. Three-dimensional CSI datasets were acquired with an $8 \times 8 \times 8$ matrix, a voxel size of $3 \times 3 \times 3$ (27 cm3) or $4 \times 4 \times 4$ (64 cm3), a 250 μs rectangular pulse, 512 time points, a sweep width ± 1 kHz and a TR=1 s. One to four acquisitions were obtained for each phase encoding step for a total acquisition time of 8.5–34 min depending on the study. A 45$^\circ$ nutation angle in the center of the region of interest at a depth of about 5–9 cm into the antero-lateral right lobe of the liver was set by use of a reference signal from triphenyl phosphate (TPP) located in the plane of the coil and the B_1 field plot.

Removal of the broad phospholipid PDE peak was accomplished with a 204.8 ms gaussian saturation pulse (12 Hz bandwidth) 290 Hz downfield from phosphocreatine (PCr).34 The off-resonance location and power (4.5 W to the coil) of the saturation pulse were chosen to remove the maximum amount of phospholipid peak area with minimal effect on the overlying PME, Pi and PDE peaks. With this procedure, we estimate that <8% of the intensities of the PME, Pi and PDE peaks was lost.

Proton-decoupling

Broadband decoupling was implemented using WALTZ-4 modulation gated with a sequence-programmable signal from the spectrometer. The decoupler channel was constructed as described elsewhere.30 Bi-level decoupling was used with a power level of 16 W during acquisition (256 ms) situated 1 ppm below the water resonance, dropping to 2 W between acquisitions for maintenance of NOE. The average specific absorption rate (SAR) was calculated taking into account the power attenuation by the transmission line; the duty cycle; and the fraction of the power delivered to the tissue, which is proportional to $(1 - Q_{\text{sat/unsat}})$. The average power delivered to the tissue was 2.9 W (for TR=1 s). In the case of the 18 x 22 cm rectangular 1H surface coil with a sensitive volume of about 2.2 l, this gives an SAR of approximately 1.3 W/kg.

BIRP Pulse

To permit measurement of T_1 in the presence of B_1 field inhomogeneities of the surface coil, we obtained uniform, arbitrary nutation angles by using the phase alternation modification of the B_1-independent rotation (BIR-4) pulse,43 referred to as the ‘BIRP’ pulse.44 The original BIR-4 pulse wave forms were generated using a FORTRAN program provided by Dr Michael Garwood at the University of Minnesota, Minneapolis. The BIRP pulse was implemented with 512 points of amplitude and phase values with a duration of 6.1 ms. The peak power to the coil was 450 W. Taking into account the power attenuation by the transmission line, the duty cycle and the fraction of the power delivered to the tissue, the average power delivered to the tissue was 2.3 W when using a TR of 1.0 s. In the case of the 15 cm circular surface coil with a sensitive volume of about 1.3 l, this gave an SAR of approximately 1.7 W/kg. The sensitive volume was approximated by the volume which contained all regions with sensitivity 0.3 relative to a point in the center of the coil. In the case of the 15 cm circular coil, this volume was approximated by a hemisphere with a radius of 8.5 cm.

T_1 Measurement

The T_1s of hepatic metabolites were measured in four healthy volunteers by using the variable nutation angle method45,46 with the BIRP pulses. By systematically varying
the nutation angle, a plot of $I(\theta)/\sin(\theta)$ vs $I(\theta)/\tan(\theta)$ for a single T_1 will provide a straight line with the slope of e^{-TR/T_1}, where I is the signal intensity and θ is the applied nutation angle. T_1 is obtained by a linear regression analysis of the data. CSI-localized liver spectra were obtained with nutation angles of 20, 40, 60 and 80°. Three-dimensional CSI datasets were acquired with an $8 \times 8 \times 8$ matrix of 64 ml voxels, first using a TR of 1.0 s with two averages per phase-encoding step in order to obtain the optimal range of TR/T_1, for metabolites with long T_1, such as PDEs, and then using a TR of 0.5 s with five averages per phase-encoding step in order to obtain the optimal range of TR/T_1, for metabolites with short T_1, such as NTPs. Fifteen pre-scans were applied before each measurement to establish a steady-state magnetization. The transmitter frequency was set between γ-NTP and α-NTP resonances. The SAR in this measurement, in which proton-decoupling, NOE enhancement, phospholipid saturation and the BIRP pulse were all implemented, was 5.5 W/kg when using a TR of 0.5 s.

NOE enhancement

NOE enhancements were measured to correct for intensity increases in the absolute concentration calculation. Localized spectra were acquired with two-dimensional CSI localization in the axial plane (the third dimension is defined by the sensitive volume of the surface coil). A BIRP pulse with a 90° nutation angle was followed by two phase encoding gradients. The 8×8 phase encoding steps resulted in a spatial resolution in the region of interest in the liver of about $5 \times 5 \times 8$ cm. A total of 512 time points, a SW=+1 kHz, a TR=20 s and one acquisition for each phase encoding step resulted in a total acquisition time of 22 min. Two measurements were performed sequentially with and without the continuous component of the bi-level decoupling applied. NOE enhancements (η) were calculated as the differences in the peak areas of these spectra divided by the peak areas of those with no enhancement.

Data analysis

Data were processed with software and techniques developed in our laboratory. The MR images were overlaid with 8×8 grids indicating the 3^P voxel positions. Three-dimensional CSI data sets were Fourier transformed in the three spatial dimensions. The phase-correction parameters for the spectrum obtained from the nonlocalized FID were used to phase-correct all spectra in the CSI array. Based on the corresponding images, three-dimensional CSI data sets were voxel shifted to center one or more voxels on liver. The CSI data from one or more voxels within regions of interest were extracted and processed using NMRl software the corresponding images: three-dimensional CSI data sets NMRl semi-automatic baseline deconvolution software.

By combining eqs (1) and (2), the reconstructed localized signal at position r, $S_{loc}(r)$, contains different degrees of contamination from the other voxels in the CSI dataset. The relation between $S_{loc}(r)$ and the PSF is expressed by the equation

$$S_{loc}(r) = \int_{\text{Sample}} s(r') \cdot PSF(r-r') \cdot d^3s,$$

(1)

where $s(r)$ is the original local signal density at position r (signal intensity per unit volume of sample) and s is a running variable over the sample. The original local signal density at position r, $s(r)$ can be related to the sample concentration, $C(r)$, by the following equation

$$s(r) = K \cdot C(r) \cdot (1 + \eta) \cdot K_{sat}(r) \cdot B_{iso}(r).$$

(2)

where $\phi(r)$ is the local saturation angle at the position r and T_1 is the measured hepatic metabolite T_1 value. $B_{iso}(r)$ is the B_1 field distribution of the surface coil and was obtained from simulations using the Biot–Savart law. Since the delay time is short in the three-dimensional CSI sequence (800 μs), we neglect the signal loss due to the T_2 relaxation. By combining eqs (1) and (2), the reconstructed localized signal intensity can be expressed as

$$S_{loc}(r) = K \int_{\text{Sample}} C(r) \cdot (1 + \eta) \cdot K_{sat}(s) \cdot B_{iso}(s) \cdot PSF(r-r') \cdot d^3s.$$

(4)

Since $S_{loc}(r)$ can be obtained by Fourier transformation of the CSI dataset, the concentration of the sample can be reconstructed from eq. (4).

In practice, several assumptions can be made to simplify the solution of eq (4): (a) the concentration is uniform over the sample; (b) the T_1 of the metabolites are constant over the sample; (c) the ηs of the metabolites are constant over

using the Henderson–Hasselbach relation with the parameters $pK_a=6.718$, $\delta_{\text{satur}}=0.591$ and $\delta_{\text{baseline}}=3.187$.

Metabolite Quantitation

Quantitation was performed using the B_1 field plot of the coil and a single reference signal from a standard placed in the plane of the coil. Corrections were made for B_1 field inhomogeneity, variable coil loading, NOE enhancement, saturation factors and contamination associated with the point spread function (PSF).

A detailed analysis of point spread function effects in quantitation of metabolites in three-dimensional CSI spectra has been previously reported.46 In a phase-encoding technique such as CSI, the discrete Fourier transform of a finite sampling dataset produces a sinc-shaped ringing artifact or point spread function in the reconstructed spatial distribution of the signal intensity.36 The PSF conveys the signal contribution from every region in the sample to a voxel. As a result, the reconstructed localized signal at position r, $S_{loc}(r)$ contains different degrees of contamination from the other voxels in the CSI dataset. The relation between $S_{loc}(r)$ and the PSF is expressed by the equation

$$S_{loc}(r) = \int_{\text{Sample}} s(r') \cdot PSF(r-r') \cdot d^3s,$$

(1)

where $s(r)$ is the original local signal density at position r (signal intensity per unit volume of sample) and s is a running variable over the sample. The original local signal density at position r, $s(r)$ can be related to the sample concentration, $C(r)$, by the following equation

$$s(r) = K \cdot C(r) \cdot (1 + \eta) \cdot K_{sat}(r) \cdot B_{iso}(r).$$

(2)

where $\phi(r)$ is the local saturation angle at the position r and T_1 is the measured hepatic metabolite T_1 value. $B_{iso}(r)$ is the B_1 field distribution of the surface coil and was obtained from simulations using the Biot–Savart law. Since the delay time is short in the three-dimensional CSI sequence (800 μs), we neglect the signal loss due to the T_2 relaxation. By combining eqs (1) and (2), the reconstructed localized signal intensity can be expressed as

$$S_{loc}(r) = K \int_{\text{Sample}} C(r) \cdot (1 + \eta) \cdot K_{sat}(s) \cdot B_{iso}(s) \cdot PSF(r-r') \cdot d^3s.$$

(4)

Since $S_{loc}(r)$ can be obtained by Fourier transformation of the CSI dataset, the concentration of the sample can be reconstructed from eq. (4).

In practice, several assumptions can be made to simplify the solution of eq (4): (a) the concentration is uniform over the sample; (b) the T_1 of the metabolites are constant over the sample; (c) the ηs of the metabolites are constant over
the sample; and (d) the sample can be represented by a simple geometrical shape, which in this study is a sphere. The assumptions in (a) and (b) are reasonable because the position of the voxel is superficial enough to avoid large blood vessels and the 1H images show relatively homogeneous tissue. The assumption in (c) is reasonable because the larger size of the 3P coil than of the 3P coil and the selection of the power levels permit degrees of 1H uniform 1H-decoupling and NOE enhancement within the region of interest. The point spread effect correction in the calibration procedure is based on the assumption that the region of the liver within the sensitive volume of the coil can be approximated by a sphere. The point spread effect correction is influenced by the geometry of the region of interest, and the extent of this influence is still under investigation. For this special case of a voxel containing liver surrounded by a considerable amount of liver, the geometry is not critical. Since PCR is absent or negligible in the localized hepatic spectra (Figs 3 and 4), we assume the other signals from muscle are also negligible. The size and the imaginary center of the sphere vary among subjects and are measured from the MR images. Figure 2 shows an example of the selection of sphere size and position for the PSF correction in one of the liver quantitation studies. The radius of the sphere varied among the volunteers from 6.5 to 10.0 cm. Since the sensitivity drops with the distance from the surface coil, the point spread effect in the selected voxel is mainly contributed by signals in the hemisphere which is closest to the coil.

With these assumptions, the sample concentration (C_s) and η become constants which drop out of the integral of eq. (4). The sample (i.e. the liver) is approximated by a

![Figure 2. Example of the selection of the sphere size and position for the PSF correction. The position of the 15 cm 3P surface coil, the triphenyl phosphate-containing reference and the representative localized voxel are shown. The size and position of the sphere are chosen to fit the contour of the portion of the liver which is closest to the coil.](image)

![Figure 3. Example of the proton-decoupled three-dimensional CSI 3P MRS study in a volunteer. An axial image has the grid overlaid on it to show the positions of 25 of the MRS voxels in this slice and spectra from nine of these voxels. The position of the 15 cm 3P surface coil is also illustrated in this image.](image)
QUANTITATION IN PROTON-DECOUPLED 3P SPECTRA OF HUMAN LIVER

Figure 4. Three-dimensional CSI-localized 3P spectra with and without proton-decoupling and NOE enhancement. Each spectrum is from a 54 ml voxel and required 34 min of data collection.

sphere, and the reconstructed localized signal for a voxel centered at position r becomes

$$S_n(r) = K \cdot C_0 \cdot (1 + \eta) \int_{\text{Sphere}} K_w(s) \cdot B_{1w}(s) \cdot PSF(r - s) \cdot d^3s$$

$$= K \cdot C_0 \cdot F,$$

(5)

where $F = (1 + \eta) \int_{\text{Sphere}} K_w(s) \cdot B_{1w}(s) \cdot PSF(r - s) \cdot d^3s$. The sample concentration can be expressed as

$$C_0 = \frac{S_{ref}(r)}{K \cdot F}.$$

(6)

To determine the value of K, a reference of known concentration was used to correlate the detected signal intensity with the number of spins. A small reference sphere (2 cm3) filled with 1.9 M TPP solution was placed in the plane of the surface coil, but 3 cm from the coil center to prevent interference caused by the central conductor of the proton coil. A fully relaxed nonlocalized spectrum was collected from the TPP reference with a 90° nutation angle. This signal intensity is

$$S_{ref} = K \cdot C_{ref} \cdot V_{ref} \cdot B_{1ref} \cdot V_{ref}.$$

(7)

Here, V_{ref} is the volume of the reference, C_{ref} is the concentration of the TPP reference (mM) and B_{1ref} is the B_1 field in the TPP reference.

The concentration of hepatic metabolites, C_p, is calculated by combining eqs (6) and (7):

$$C_p = \frac{C_{ref} \cdot S_{ref} \cdot F}{S_{ref} \cdot (B_{1ref} \cdot V_{ref})}.$$

(8)

Since it is not feasible to obtain all of the data required to perform a rigorous quantitation study in one subject at one time, we used mean values of T_1s and NOE enhancements that were obtained in separate series of experiments.

RESULTS

The procedure by which we obtain MRI-directed 3P MRS localized in liver using three-dimensional CSI is illustrated in Fig. 3. Figure 3 is an axial image with overlying grids which show the positions of 25 of the MRS voxels in this slice and the spectra from the nine central voxels. The position of the 15 cm 3P surface coil is also illustrated in this image. The spectra from voxels at the surface of the body contain PCR from muscle in the chest wall. Voxels localized entirely within the liver contain no PCR. Spectra from voxels centered 10 cm or more from the coil are noisy because they are beyond the sensitive volume of the coil. The central voxel is taken to best represent hepatic metabolism. The effect of proton decoupling and NOE-enhancement on the 3P MR spectrum is shown in Fig. 4.

Decoupling permits excellent resolution of the separate major components in the PME and PDE regions, and decoupling plus NOE enhancement increase the S/N of most of the resonances in the spectrum.

The assignment of metabolites to peaks in the localized proton-decoupled 3P spectrum of liver is shown in Fig. 5. Table 1 lists the chemical shifts of the major peaks observed in 10 subjects. The dominance of glycerophosphoethanolamine (GPEth) and GPChol in the PDE region and relative intensities of the GPEth and GPChol peaks are very similar to observations in vitro in fresh human liver biopsies.51 The

<table>
<thead>
<tr>
<th>Metabolite</th>
<th>Chemical Shift (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PME$_1$</td>
<td>4.36 ± 0.05</td>
</tr>
<tr>
<td>PME$_2$</td>
<td>3.84 ± 0.02</td>
</tr>
<tr>
<td>Pi</td>
<td>2.69 ± 0.05</td>
</tr>
<tr>
<td>GPEth</td>
<td>1.05 ± 0.01</td>
</tr>
<tr>
<td>GPChol</td>
<td>0.49</td>
</tr>
<tr>
<td>Unknown</td>
<td>-0.30 ± 0.10</td>
</tr>
<tr>
<td>γ-NTP</td>
<td>-4.88 ± 0.04</td>
</tr>
<tr>
<td>α-NTP</td>
<td>-10.00 ± 0.03</td>
</tr>
<tr>
<td>DPDE(NAD)</td>
<td>-10.78 ± 0.04</td>
</tr>
<tr>
<td>β-NTP</td>
<td>-18.58 ± 0.04</td>
</tr>
</tbody>
</table>

Table 1. Chemical shift (in ppm) of 3P metabolites in normal liver (mean ± SD, $n=10$)
composition of the two well-resolved peaks in the PME region is, however, not easy to determine. In perchloric acid extracts studied at pH 8.9, the most prominent peak in the PME region was adenosine monophosphate (AMP). At the pH observed in liver in vivo (7.24), the AMP peak should occur around 4.2 ppm, while the PME peak we observe is centered at 4.36 ppm. Consequently it is possible that other metabolites, such as sugar phosphates, contribute to this peak. In extracts there were significant contributions to PME from coenzyme A and the 2P- and 3P-peaks of 2,3-diphosphoglycerate (DPG), the latter presumably in erythrocytes. At the pH of blood, erythrocyte 2,3-DPG peaks are at 3.8 and 2.8 ppm. Since the vascular volume of the human liver is approximately 25%, it is likely that signals from 2,3-DPG contribute to PME and to Pi. In fact, the Pi peak in proton-decoupled spectra is usually noted to have a hump on its downfield side at 2.8 ppm or to be a doublet (e.g. Figs 4,6,7,12). However, it is unlikely that 2,3-DPG signals account for all of the PME or Pi peaks. As will be shown below, PME has a concentration of 1.1 mmol/l of liver and Pi 2.8 mmol/l of liver. With a vascular volume of 25% and an erythrocyte [2,3-DPG] of 4.2 mmol/l cells, the hepatic [2,3-DPG] would be 0.5 mmol/l of liver which would account for 45% of the PME signal and 18% of the Pi signal.

The PME chemical shift of 2.69±0.05 ppm corresponds to an apparent pH of 7.34±0.06, in agreement with previously reported studies. However, it is likely that both 3P-DPG and Pi contribute to this peak. From 10 studies on six subjects which show obvious split peaks in the Pi, the chemical shifts are 2.89±0.09 and 2.59±0.06. Since 2.89 is close to the position of 3P-DPG in erythrocytes, it is likely that the Pi chemical shift is 2.59 and that hepatic pH is closer to 7.24 than to 7.34.

The unknown PDE peak at −0.30 ppm, which was also observed in decoupled spectra by Wicklow et al. is at the proper position for phosphoenolpyruvate (PEP), which has been documented in rat liver and has been observed in the liver of rats infused with l-alanine. Three major peaks at −4.88, −10.00 and −18.58 ppm are due to the three phosphates of nucleoside triphosphates (NTP). Diphosphodiesters (DPDE), which in liver are predominantly nicotinamide adenine dinucleotide (NAD) and NADH, are visible as a shoulder on the upfield side of the α-NDP peak.

Figure 6. Non-localized 31P spectra from the liver (a) without and (b) with phospholipid saturation. The difference between these two spectra is shown in (c). The arrow indicates the position of the off-resonance selective gaussian pulse. Each spectrum was collected with a 250 µs rectangular pulse, 84 acquisitions and TR=1 s.

Figure 7. Three-dimensional localized 31P MRS with and without phospholipid saturation. (a) Axial image with the grid overlaid on it. The spectra corresponding to the highlighted region are shown without (b) and with (c) phospholipid saturation.
Phospholipid resonance saturation and temporal reproducibility

The broad resonance underlying the PME-through-PDE region in liver appears to be primarily from phospholipids in the endoplasmic reticulum.\(^3\) Removal of this resonance by saturation is shown in Fig. 6. In 10 separate nonlocalized spectra obtained from five subjects, the broad phospholipid resonance [Fig. 6(c)] had a linewidth of 4.8±0.5(5D) ppm and a peak position of 0.1±0.2 ppm. The use of phospholipid saturation in proton-decoupled, three-dimensional CSI-localized \(^{31}\)P MRS is shown in Fig. 7.

To evaluate the reproducibility of the phospholipid saturation technique, one subject was studied five times without saturation and seven times with saturation over a period of 2 months. Since molar quantitation was not obtained in all cases, the results are expressed as metabolite signal intensity fractions. Mean metabolite fractions and their coefficients of variation (CV) from spectra localized to the liver are shown without and with saturation in columns (2) and (3) in Table 2. Phospholipid saturation did not introduce greater variations in the data; in fact it resulted in smaller variations for several of the peak intensity fractions.

Intraindividual variations were examined in serial \(^{31}\)P MR spectra. In short-term studies neither the subject nor the coil were removed, in order to determine variations resulting primarily from statistical noise. In long-term studies, the same subject returned seven times over a period of 2 months, in order to determine additional variance resulting from coil placement, subject cooperation, instrument drift and possibly diet. The results of long- and short-term reproducibility in phospholipid-saturated spectra are compared in columns (2) and (3) in Table 2. The CVs for the six major metabolite signals (total PME, total PDE, Pi and NTPs) vary from 6 to 17% (average 11%) in the long-term study and from 4 to 11% (average 8%) in the short-term study. For the separate components of the PME and PDE regions, the CVs are larger (17-35%). To some extent these reflect variations in resolution and consequent uncertainties in peak integration. It is possible that physiological variations (eg, diet\(^a\)) contribute as well. If we assume that the short-term study provides primarily an index of noise inherent in the system and the measurement, then only slightly greater variability was introduced when a subject was studied at various times over several weeks.

Table 2. Intra-individual temporal reproducibility of proton-decoupled, three-dimensional CSI-localized \(^{31}\)P MRS and the effects of phospholipid saturation. Metabolite signal intensities are expressed as fractions of total phosphorus signal intensity. Means and CV(%) are shown

<table>
<thead>
<tr>
<th>Metabolite</th>
<th>Long-term (n=5)</th>
<th>Long-term (n=7)</th>
<th>Short-term (n=5)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>without saturation</td>
<td>with saturation</td>
<td>with saturation</td>
</tr>
<tr>
<td>PME(_a)</td>
<td>0.051(30%)</td>
<td>0.04(20%)</td>
<td>0.04(24%)</td>
</tr>
<tr>
<td>PME(_b)</td>
<td>0.051(48%)</td>
<td>0.04(24%)</td>
<td>0.0(22%)</td>
</tr>
<tr>
<td>Pi</td>
<td>0.10(15%)</td>
<td>0.08(17%)</td>
<td>0.07(11%)</td>
</tr>
<tr>
<td>GPEth</td>
<td>0.12(22%)</td>
<td>0.12(8%)</td>
<td>0.13(13%)</td>
</tr>
<tr>
<td>GPCChol</td>
<td>0.06(57%)</td>
<td>0.08(34%)</td>
<td>0.08(17%)</td>
</tr>
<tr>
<td>Unknown</td>
<td>0.24(22%)(^a)</td>
<td>0.06(35%)</td>
<td>0.06(24%)</td>
</tr>
<tr>
<td>PDE(^a)</td>
<td>0.34(34%)(^b)</td>
<td>0.20(8%)</td>
<td>0.21(4%)</td>
</tr>
<tr>
<td>y-NTP</td>
<td>0.12(19%)</td>
<td>0.16(12%)</td>
<td>0.16(6%)</td>
</tr>
<tr>
<td>a-NTP+NAD</td>
<td>0.19(11%)</td>
<td>0.26(9%)</td>
<td>0.25(6%)</td>
</tr>
<tr>
<td>y-NTP</td>
<td>0.11(17%)</td>
<td>0.17(12%)</td>
<td>0.17(8%)</td>
</tr>
</tbody>
</table>

\(^a\)PME is the summation of PME, and PME; \(^b\)PDE is the summation of GPEth, GPCChol and unknown. \(^c\)Includes the phospholipid broad resonance.

Performance of the BIRP pulse

Before applying the BIRP pulse to measure \(^{31}\)P T\(_1\) relaxation times and NOE enhancements in human liver, we tested its performance in the spatial and frequency-offset distributions using a 20×10×4 cm\(^3\) rectangular phantom containing phenylphosphate, inorganic phosphate and tripolyphosphate. Figure 8(a) shows an axial image with overlaying grids which indicate the positions of the MRS voxels (2.5×2.5×2.5 cm\(^3\)) in this slice. A nonlocalized spectrum with a 45° BIRP pulse is shown in Fig. 8(b). The frequency range of the signals, ±500 Hz, is wider than that of the \(^{31}\)P signals in liver. Figure 8(c) and (d) show the spectra from the highlighted voxels obtained with 45 and 180° nutation angle BIRP pulses, respectively. The null signal following a 180° nutation angle occurs uniformly to a depth that is 3/4 of the coil diameter, and occurs throughout the frequency range of the spectra.

The accuracy of the nutation angles set by the BIRP pulse was tested by using a 5 ml spherical phantom which contained phenylphosphate and inorganic phosphate with nominal nutation angles in the range of 10–90° at increments of 10° and TR>5T\(_1\). The sample was positioned 5 cm away from the \(^{31}\)P surface coil. The carrier frequency was positioned between the two resonances shown in Fig. 9(a). Figure 9(b) shows the fully relaxed signal intensity of these resonances as a function of the nutation angle \(\phi\). The BIRP pulse generated the correct sinusoidal dependence of signal intensity within an error of only a few per cent (the difference between the nominal nutation angle and the apparent nutation angle ranged from 1° to 4° for phenylphosphate and 4° to 1° for inorganic phosphate). The apparent nutation angle was determined from the arctan of the ratio of the signal at the nominal nutation angle to the signal measured with \(\phi=90°\).

To test the use of the variable nutation angle method to measure the \(T_1\) in \(^{31}\)P spectra obtained with surface coils, nonlocalized \(T_1\) measurements were performed on four 5 ml samples of phenylphosphate and inorganic phosphate doped with different amounts of NiCl\(_2\) to give a range of \(T_1\) values from 0.5 to 7.5 s. The \(T_1\) measurements were done first by a standard inversion-recovery method and then by the variable nutation angle method. Invasion-recovery experiments were performed with TR>5T\(_1\). In the variable nutation angle experiment, four nutation angles were used (20, 40, 60 and 80°) and the TR values were chosen to fall in the range 0.1<TR/T\(_1<2.0\). Fifteen pre-scans were applied before each measurement to establish a steady-state magnetization. The results, shown in Fig. 10, demonstrate that \(T_1\) measurements by the variable nutation angle method and the inversion-recovery method agree within 15%.

T\(_1\) of hepatic metabolite signals

Figure 11 illustrates the measurement of the \(T_1\) of proton-decoupled, three-dimensional CSI-localized \(^{31}\)P signals of hepatic metabolites. It includes a peak (GPEth+GPCChol +unknown) with long \(T_1\), measured with TR=1.0 s, Fig. 11(a), and one (a-NTP+NAD) with a short \(T_1\) measured...
with \(TR = 0.5 \) s, Fig. 11(c)]. The corresponding plots of \(I(\phi)/\sin(\phi) \) against \(I(\phi)/\tan(\phi) \) in Fig. 11(b) and (d) show a linear correlation of 0.98 in GPEth + GPC chol and 0.99 in \(\alpha \)-NTP + NAD and give \(T_1 \)s of 4.6 and 0.5 s, respectively. The \(T_1 \) of PCr from a voxel which included mostly chest wall muscle was calculated in each subject and compared to previous studies in muscle to help verify the \(T_1 \) measurements in vivo. The results of hepatic metabolite \(T_1 \) measurements are summarized in Table 3.

NOE Enhancements

The position of the coil, the CSI grids in the axial plane and the \(^3 \)P voxels of interest for this experiment are shown in Fig. 12(a). The localized \(^3 \)P spectra without the constant component of bi-level decoupling from the two voxels are shown in Fig. 12(b) and (d). The voxel from which the spectrum is shown in Fig. 12(d) was included because it contains muscle, the PCr signal of which has a known NOE enhancement.

![Phantom Image](image)

Figure 8. Demonstration of homogeneous excitation by the BIRP pulse using a phantom which contains phenylphosphate, inorganic phosphate and tripolyphosphate in solution. (a) Axial image with the grid overlaid on it to show the positions of the 2.5 \times 2.5 \times 2.5 \text{ cm}^3 voxels and the phantom setup. (b) Nonlocalized spectrum using a 45° BIRP pulse. (c and d) Subset of three-dimensional spectra corresponding to the voxels highlighted in (a), with (c) 45° and (d) 180° BIRP pulses. The spectra in (d) are magnified 8 times compared to the spectra in (c).
Figure 9. (a) A nonlocalized 3P spectrum from a 5 ml phenylphosphate and inorganic phosphate solution which shows the frequency offset of these two resonances. (b) 3P signal intensity from phenylphosphate and inorganic phosphate as a function of the nominal flip angle, θ. Signal intensities were normalized to signal intensity obtained with a 90° flip angle.

Figure 10. Comparison of T_1 measurements obtained by the variable nutation angle method and by the standard inversion-recovery method. (a). Measurements were made on four 5 ml samples of phenylphosphate and inorganic phosphate doped with different amounts of NiCl$_2$ to give a range of T_1 values from 0.5 to 7.5 s. The diagonal line is the line of identity. The coefficients of variation of T_1 measurements ranged from 5.4% for phenylphosphate at 1.1 s to 11.8% for Pi at 6.4 s. The percentage by which T_1 measurements made by the variable nutation angle method differ from those obtained by inversion-recovery is plotted in (b) as function of TR/T_1.

Quantitation of Hepatic Metabolites

To validate the quantitation procedure, a 21 spherical phantom containing 100.3 mM inorganic phosphate solution (T_1=6.9 s, measured by the variable nutation angle method) was placed under the coil. The relative position of enhancement factor56 thus enabling us to validate our technique. The long TR (20 s) of this experiment results in negligible NOE enhancement when the decoupler duration is 250 ms in the absence of the constant component of bi-level decoupling. NOE enhancement caused by low-level irradiation of 1H is shown in the spectra from the same two voxels in Fig. 12(c) and (e). Results from four normal volunteers are summarized in Table 3.

NOE enhancement is associated with relaxation mechanisms related to dipolar coupling, especially dipolar coupling between 3P and solvent (water) 1H nuclei.57 The degree of NOE enhancement is related to the extent to which dipolar interactions contribute to relaxation relative to other mechanisms like chemical shift anisotropy. The maximum η (1.24) occurs in the extreme narrowing limit if the only relaxation mechanism is dipolar coupling. In the extreme narrowing limit, the observed η provides a measure of the relative contributions of dipolar and other mechanisms of relaxation.58 Moreover, η and T_1 among hepatic metabolites and muscle PCr is shown in Fig. 13. These values are strongly correlated ($r=0.90$) and indicate that dipolar mechanisms contribute strongly to relaxation in GPEth, GPChol and PCr, moderately to relaxation in PMEs, and little to relaxation in Pi and NTPs.
the coil to the surface of the standard phantom shown in Fig. 14(a) was similar to the relative position of the coil to the surface of the liver in vivo (Fig. 2). Three-dimensional CSI datasets from seven different voxel sizes ($2 \times 2 \times 2$ to $5 \times 5 \times 5$ cm3) were acquired with an $8 \times 8 \times 8$ matrix, 512 time points, a sweep width ± 1kHz, a TR=1 s, one acquisition for each phase encoding step, and a 45° nutation angle at the depth of 8.0 cm from the coil. One voxel in each three-dimensional CSI experiment, having the same distance to the coil as shown in Fig. 14(a), was used to evaluate the accuracy of the quantitation program. Figure 14(b) shows the results of this experiment. PSF corrections are only needed for voxel sizes of $4 \times 4 \times 4$ cm3 and larger in this phantom setup. To further evaluate the reliability of the quantitation and PSF correction procedures, we repeated this experiment with three different coils (another 15 cm coil and two 12 cm coils) and different relative positions of the phantom to the coils. The results of these three experiments are similar to those of the first which is shown in Fig. 14(b). The average concentration obtained by these four studies on voxel sizes of $4 \times 4 \times 4$ cm3 and larger was 125.7 ± 6.6 mM for no PSF corrections and 103.0 ± 4.3 mM after the PSF corrections. The average PSF correction factor for voxel sizes of $4 \times 4 \times 4$ cm3 and larger was 21%.

Taking into account the measured values of T_1 and the measured NOE enhancements, the molar concentrations of hepatic metabolites in proton-decoupled 31P spectra were calculated using eq. (8). The results are summarized in Table 3. Molar concentrations were calculated using the mean values of T_1 and η obtained in separate studies. The CVs of the concentrations shown in Table 3 are therefore measures of inter-individual variations in the fractions of 31P signal in the various metabolites plus variations introduced by reference signal measurements and by corrections for B_1 field and point spread effects. Nevertheless, they are on average only slightly larger than the variations in the long-term individual temporal reproducibility studies shown in column (3) in Table 2. The average PSF correction factor for hepatic metabolites using voxels of 64 cm3 and larger was 23%. This factor was quite similar to that obtained in the phantom [Fig. 14(b)], which for similar voxel sizes was 21%. Although the phantom experiment can not entirely

Figure 12. Example of NOE enhancement measurement. (a) Axial image with the grid overlaid on it to show the position of the 4×4 cm2 voxels. The coil position is also indicated. The spectra corresponding to the highlighted voxels containing mostly chest wall muscle (bottom) and only liver (top) without continuous 1H irradiation applied are shown in (b) and (d). (c) and (e) are the corresponding spectra with continuous 1H irradiation applied.
Table 3. T_1, NOE enhancement and molar concentration of human hepatic 3P metabolites (mean ± SD). Concentrations were calculated using eq. (8) and taking the mean values of T_1 and of NOE enhancement obtained in separate studies. CVs (%) are indicated.

<table>
<thead>
<tr>
<th>Metabolites</th>
<th>T_1 (s)</th>
<th>NOE enhancement</th>
<th>Concentration (mM/l of liver)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PME₁</td>
<td>2.2 ± 1.1</td>
<td>0.30 ± 0.19</td>
<td>1.2(33%)</td>
</tr>
<tr>
<td>PME₂</td>
<td>2.3 ± 0.8</td>
<td>0.47 ± 0.03</td>
<td>1.1(9%)</td>
</tr>
<tr>
<td>PME</td>
<td>2.1 ± 0.9</td>
<td>0.34 ± 0.04</td>
<td>2.4(17%)</td>
</tr>
<tr>
<td>Pi</td>
<td>0.8 ± 0.2</td>
<td>0.17 ± 0.16</td>
<td>2.8(18%)</td>
</tr>
<tr>
<td>GPEth</td>
<td>5.6 ± 1.8</td>
<td>0.59 ± 0.28</td>
<td>2.9(25%)</td>
</tr>
<tr>
<td>GPC chol</td>
<td>6.6 ± 1.1</td>
<td>0.75 ± 0.28</td>
<td>3.5(17%)</td>
</tr>
<tr>
<td>Unknown</td>
<td>2.0 ± 1.0</td>
<td>0.34 (n=2)</td>
<td>1.4(65%)</td>
</tr>
<tr>
<td>PDE</td>
<td>6.1 ± 1.3</td>
<td>0.63 ± 0.07</td>
<td>7.6(22%)</td>
</tr>
<tr>
<td>PCr</td>
<td>6.3 ± 0.4</td>
<td>0.59 ± 0.11</td>
<td>---</td>
</tr>
<tr>
<td>γ-NTP</td>
<td>0.4 ± 0.1</td>
<td>0.21 ± 0.08</td>
<td>3.7(16%)</td>
</tr>
<tr>
<td>α-NTP</td>
<td>0.6 ± 0.1</td>
<td>0.36 ± 0.03</td>
<td>3.8(6%)</td>
</tr>
<tr>
<td>NAD</td>
<td>2.6 ± 14</td>
<td>0.55 ± 0.1</td>
<td>1.1(6%)</td>
</tr>
<tr>
<td>β-NTP</td>
<td>0.4 ± 0.1</td>
<td>0.21 ± 0.09</td>
<td>3.8(8%)</td>
</tr>
</tbody>
</table>

*Estimated from the peak height.
†From chest wall muscle.
‡Calculated assuming α-NTP is the same as γ-NTP and β-NTP.

Reproduce the in vivo situation where other tissues outside of the liver may contribute signals to the spectrum, it should be noted that even the strongest signal from the chest wall muscle, that of PCr, is negligible in the localized liver spectrum.

DISCUSSION

These experiments demonstrate that it is possible to obtain 1H-decoupled, NOE-enhanced, phospholipid-saturated, 3P spectra of human liver that are consistently of high quality and are reproducible within relatively small coefficients of variation. The major separate components of the PME and PDE regions are clearly resolved. Molar concentrations of metabolites were obtained by accurately localizing spectra in three dimensions using CSI, correcting for point-spread effects, and directly measuring T_1 and NOE. A strong correlation between T_1 and NOE permits estimates of the relative contributions of the dipolar coupling mechanism to 3P relaxation in hepatic metabolites.

A number of reports have indicated the potential value of 3P in clinical studies.1-24 The improvements in resolution and S/N obtained with 1H-decoupling and NOE-enhancement make it feasible to obtain information about hepatic metabolites not previously available in vivo, and should improve the ability of 3P MRS to characterize hepatic diseases.

The mean human hepatic NTP concentration of 3.7 mmol/l of liver is about 30% higher than previously reported in studies using ISIS15,16 or one-dimensional CSI for localization, and higher than the 2-2.5 mmol/kg weight reported in studies of tissue extracts.26 However, hepatic NTP readily decreases under ischemic conditions,21 so we believe that the in vivo concentration is likely to be closer to the value we obtained. The GPEth and GPC chol concentrations we obtained (2.8 and 3.5 mmol/l of liver, respectively) are about 20% higher than reported in tissue extract studies.21

The T_1 values of 3P we measured in human hepatic NTPs are in good agreement with those previously reported in coupled spectra in vivo, which varied from about 0.4 to 0.6 s.3,5,9,42 However, our values for T_1 of PME, PDE, and Pi are quite different from some of those reported in the literature which are themselves quite variable. There is particularly the case for PDE, the reported T_1s of which were 1.4, 3.3, 1.9, 2.4, and 8.6.2,6 The T_1 of PCr we measured in chest wall muscle (6.3 s) is quite similar to that reported in skeletal muscle.3,6 Moreover, the long T_1s we measured in hepatic GPC chol (6.6 s) is similar to that reported in skeletal muscle.6,26 We believe that the short T_1s of hepatic PDE reported in most previous studies may have been a consequence of inability to resolve GPEth and GPC chol from underlying phospholipid signals and/or failure to use acquisition parameters appropriate for the measurement of T_1. Indeed, a long T_1 of hepatic PDE (8.6 s) was obtained in a subject studied using inversion-recovery and a T_1 of ~7 s was deduced in studies using a wide range of TR values.53

The NOE enhancement factor of 0.59 in chest wall muscle PCr is similar to that reported in reported in chest wall29 and calf37,39 muscle. Strong enhancement of hepatic GPEth and GPC chol signals were observed (~0.6~0.7), moderate enhancement of PME signals (0.3~0.5) and slight enhancement of Pi and NTP signals (~0.2). This pattern, and the degree to which the same metabolite undergoes NOE enhancement, are different from those in calf muscle37,39 and brain.29 For example, NTP signals in muscle undergo considerably greater enhancement (~0.5) than in liver. This indicates that the relative contribution of dipolar coupling to 3P relaxation of a particular metabolite may differ in different tissues, and that η must be measured in the tissue of interest in order to obtain a correction factor for calculation of molar concentrations.

The accuracy and errors of the measured concentrations are affected by the accuracy and errors of the spatial volume localization, the signal integration, the T_1 measurement, the NOE measurement and the PSF correction. The accuracy of the volume, which is defined by gradients in three dimensions, has been calibrated on our system and the error is less than 3% in each dimension. The reliability and reproducibility of signal integration were estimated using simulated hepatic 3P spectra which were comparable in resolution and S/N to in vivo spectra. The variations are approximately 7% for isolated and 15% for overlapping
peaks. The accuracy of the PSF correction in the phantom studies was high, the mean corrected concentration was within 3% of the actual one. In our reported hepatic metabolite concentrations, we used mean values of T_i and η determined in separate series of experiments. The coefficients of variation of the T_i and η measurements averaged about 30%. Since the T_i and η are correlated, the propagation of these variations into concentration calculations is difficult to determine. To obtain some idea of the extent to which errors in T_i and η might affect the molar concentration, we calculated concentrations under four conditions: (i) no correction for saturation effect and NOE enhancement; (ii) correction for NOE enhancement only; (iii) correction for saturation effect only; and (iv) correction for both saturation effect and NOE enhancement. The results are shown in Fig. 15. Since the TR of the measurement (1 s) is smaller than $5T_i$ of all the hepatic metabolites, the calculated concentration without correction for the saturation effect will underestimate the result. The calculated concentration without correcting for NOE enhancement will overestimate the result. Correction for both results in concentrations that are different from the uncorrected ones by 25% for PME, 8% for Pi, 50% for PDE and -15% for NTP. Thus, T_i and η corrections have opposite effects on molar quantitation. This, combined with the fact that T_i and η are highly correlated (Fig. 13) implies that their variations are not independent and probably do not have additive effect on errors in molar quantitation. A potential practical application of the result in Fig. 15 is that, if one performs NOE enhancement then under these experimental conditions the uncorrected concentration will be within 25% of the concentration corrected for T_i and η, except for PDE (which has very long T_i and high η).

In clinical studies in which molar quantitation is desired, it is not possible to measure T_i and NOE enhancement in each subject. However, the strong correlation between T_i and η...
and η suggests that if one of these factors is measured, the other can be derived. Unfortunately, measuring even one of these, at least by standard means (e.g., inversion recovery or progressive saturation in the T1 measurement and long TR with a saturation pulse sequence in the NOE enhancement measurement) is time consuming. Less time is required if one uses a nonlocalized technique to measure T1 or NOE enhancement, but this could be a problem because of the different T1 and NOE enhancements of Pi, GPChol and NTPs in liver and chest wall muscle. The use of a nonlocalized technique is only feasible if one is interested only in the PME region.

An alternative way to obtain NOE enhancement is by using a short TR with a single 180° pulse in the proton channel.64 The power deposition problem and the difficulty achieving full NOE enhancement are the main concerns with this technique. On the other hand, the variable-nutation angle method is a more rapid way to measure the T1 than the standard inversion recovery method, but the time is still not fast enough to add the T1 measurement experiment to each clinical 31P MRS study. To reduce the time requirement, the use of only two nutation angles (at 15 and 60° for T1/TR=0.1–1.0) has been suggested.65 Indeed, we found that by selecting the 30 and 60° data from our variable-nutation angle measurement, the T1's are quite similar to those obtained with four nutation angles (1.5 s vs 2.1 s on PME, 0.8 vs 0.8 s on Pi, 5.8 vs 6.1 s on PDE and 0.4 vs 0.4 s on b-NTP). Considering the time constraints, acceptable S/N within a short period of time and the requirement of localization, the combination of the dual-angle method with two-dimensional CSI localization (8×8 matrix, six acquisition and TR=1 s, the third dimension defined by the sensitive volume of the coil) may permit measurement of T1 in each 31P MRS study within 15 min. A drawback in liver studies is that the T1's vary over a wide angle, and it is not possible to optimize TR to obtain both short and long T1's in one study.

In conclusion, these experiments demonstrate that high quality 31P spectra with good resolution of PME and PDE metabolites can be obtained routinely from human liver using proton-decoupled, NOE-enhanced, phospholipid-saturated 31P acquisitions localized with three-dimensional CSI. A complete approach to absolute quantitation is demonstrated, including measurements of T1 and η and corrections for point spread effects. The additional information obtained using proton-decoupling and NOE-enhancement should help expand the scope of 31P MRS for the study of hepatic disorders.

Acknowledgements

We thank Ronald McNamara, PhD for assistance in phospholipid saturation pulse and BIRP pulse implementation, Peter Z. Liu and Tariq Javaid, M.S. for assistance in automatic shimming, Chris Elsasser for assistance in coil construction and Michael Garwood, PhD for providing the BIR-4 pulse program. This work was supported in part by NIH grants CA58632, CA54339 and CA41076.

REFERENCES

5. Angus, P. W., Dixon, R. M., Rajagopalan, B. and Radda, G. K. A study of patients with alcoholic liver disease by P-31

36. Bottomley, P. A. and Ouwenerk, R. BIR, an improved

