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For most of its history, magnetic resonance has been described semiclassically, with spins treated by quantum mechanics and magnetic fields by
classical physics. Here, we use the formalism of cavity quantum electrodynamics to give a fully quantum mechanical theory. We do not quantize the
RF field directly but, instead, couple the spins to a quantized harmonic oscillator, representing the probe. This enables accurate numerical estimates
of the rate of radiation damping in NMR. To facilitate these calculations, we also present a new semiclassical theory of radiation damping, rewritten
using the reciprocity theory to eliminate the filling factor. Throughout we emphasize that radiation damping, usually considered a nuisance by
practitioners, forms the basis for signal reception and occurs in every magnetic resonance experiment.
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Introduction
The fundamental process of signal reception in NMR is the
transfer of a photon from the nuclear spin system to the
detector, typically a tuned RF coil. This loss of Zeeman energy
by the spins causes the precessing nuclear moment to tilt
slightly toward the vertical; when this process is fast rela-
tive to transverse relaxation (or other decay mechanisms), it
causes unwanted broadening of the spectroscopic line, and
has therefore received the name of radiation damping. Usually
regarded as an occasional nuisance when observing strong
signals, radiation damping is in fact present in every NMR
experiment, and constitutes the means by which a detectable
signal is formed. Taking the common case of a coil perfectly
impedance matched to the receiver, half of the energy gotten
from the spins is sent to the preamplifier (i.e., radiated), while
the other half is lost in the coil’s own resistance.

Given that NMR is a mature discipline, with widespread
application in fields as diverse as chemical physics and clinical
medicine, it is surprising that a satisfactory quantum mechan-
ical theory of damping was not given early on, particularly
since quantum optics offers a model – that of Jaynes and
Cummings1 – which is well adapted to the description of
NMR, and has been recently employed for that purpose by the
present author.2 Jaynes and Cummings studied the ammonia
maser, but their theory applies to any two-level atom – or spin
1/2 – coupled to a quantized cavity; and their work can be
considered the cornerstone of cavity quantum electrodynamics
(CQED), a field3,4 for which a Nobel prize was awarded in
2012. Although Jaynes and Cummings dealt with electric fields
and dipole moments, we shall describe their work in terms of
the corresponding magnetic quantities.

But a workable quantum theory of radiation damping also
requires reexamination of the semiclassical theory, first pro-
posed in the seminal paper5 of Bloembergen and Pound (B–P)
and reused, largely without modification, over the ensuing half-
century. In fact, the semiclassical approach – with spins treated
by quantum mechanics, and electrical entities, for example,
cavities, fields, and antennas, by classical physics – has been
dominant throughout the history of NMR. In what follows,
we counter that tendency, and use pure quantum mechanics,
via the Jaynes–Cummings model, to illustrate in fine detail the
mechanism of signal formation in NMR; we also introduce a
new semiclassical theory of radiation damping (rewritten to
eliminate the troublesome filling factor) which, combined with
the J–C model, enables quantitative calculation by quantum
mechanics of the signal strength in NMR. Along the way
we encounter certain counterintuitive results, well known in
CQED, such as the nonclassical behavior of the quantum Bloch
vector.2 These pertain to the ongoing work, shared by CQED
and NMR, of formulating the transition between the fully
quantum mechanical and the semiclassical regimes.

Background: Cavity Quantum Electrodynmaics
(CQED)
Excited Atoms in Resonant Cavities: Enhancement
of Spontaneous Emission

We turn to CQED, which, (despite having roots in NMR) grew
out of laser theory, as the study of atoms interacting with pho-
tons, inside a resonant cavity, tuned to the photon frequency,
which is also that of the radiative transitions in question. The
salient fact of CQED is that quantum emitters, be they atoms or
spins, couple directly and strongly to the resonant cavity – or, in
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the case of NMR, the tuned reception coil – thereby enhancing
the rate of spontaneous emission, by several orders of magni-
tude. Recognition of this phenomenon, called cavity enhance-
ment, is usually credited to Purcell,6 although B–P cite the later
work of Suryan,7 whose arguments are based directly on NMR
coils. Cavity enhancement can be large, exceeding 10 orders of
magnitude, as we demonstrate in subsequent calculations. The
magnitude of cavity enhancement is a key factor in generating
NMR signals of observable strength. The converse effect – that
detuning the cavity (or coil) inhibits spontaneous emission, is
well known in NMR, and well documented.8

Since the relationship of NMR to CQED is a central motif
throughout this article, we often use the term ‘cavity’ when
referring to the NMR coil. (We may also, depending on cir-
cumstance, speak interchangeably of oscillators, resonators,
and tuned inductors.)

Cavities and Radiation Oscillators

Preparatory to discussing quantum fields, we recall a simple
example from classical physics, that is, the ripple tank – a
device for producing and visualizing water waves, and a
familiar fixture in undergraduate physics laboratories. The
ripple tank employs a paddle, immersed in the water and
harmonically driven, to excite waves, whose images are then
viewed by projection on a screen. The point is elementary:
namely, that a harmonic oscillator (the paddle) can source a
classical wave.

This idea is taken over in quantum electrodynamics, which
invokes the radiation oscillator – a virtual device, driving a
given Fourier component of a quantum field, such as a par-
ticular mode of a resonant cavity. Then an array of virtual
oscillators provides multimode excitation. An excited oscilla-
tor is deemed to be populated by photons; and its degree of
excitation is measured by its occupation number, which counts
the number of photons it contains.

Typically in quantum field theory, the radiation oscillator is
constructed by quantizing a classical harmonic oscillator of unit
mass; Dirac’s book,9 despite its legendary reputation for diffi-
culty, is clear and simple on this point. Then in the quantum
description of emission inside a laser cavity, a photon is trans-
ferred from an atom, to excite the radiation oscillator, whose
occupation number increases by one. Concurrently, the atom
drops from its excited to its ground state. The cavity field enters
this description primarily as a factor in the coupling constant
between atom and cavity.

Paradoxically, in the case of NMR, we shall have no need
to invoke the abstraction of a virtual radiation oscillator – the
LC oscillator comprising our NMR probe is a concrete object,
whose features furnish the requirements for a quantum
description. All that is needed is the quantization of the
LC circuit, and this is achieved by analogy to a mechanical
oscillator. A mechanical oscillator in classical physics – say,
a pendulum – is described by the mass, the position, and the
velocity of the plumb bob; the spring constant also enters
the expression for Newton’s law. We substitute inductance
for mass, charge for position, and current for velocity, as
well as inverse capacitance for spring constant, to obtain,
from Newton’s equation for the pendulum, no more nor

less than Kirchhoff ’’s equation for the LC oscillator. Inas-
much as a quantum treatment of the mechanical oscillator
is possible, so it is for the LC oscillator. This forms the basis
for a quantum description of NMR, to which we presently
turn our attention. Before doing so, we note that quantiza-
tion of the LC oscillator’s near field is problematic,10 due to
the presence of longitudinal components, and is not here
attempted.

Classical Harmonic Oscillators

Before showing how to couple a quantized LC oscillator to a
spin, we first discuss the physical meaning of certain key terms
which appear in the coupling Hamiltonian. For simplicity, we
first give the classical Hamiltonian function for a lossless (i.e.,
undamped) mechanical oscillator, with mass m, and spring
constant k = 𝜔2

0m:

1 = 1
2m

(p2 + m2𝜔2
0x2) (1)

The position and momentum are p and x. The classi-
cal Hamiltonian for a lossless LC oscillator is similar in
appearance:

2 = 1
2L

(𝜑2 + L2𝜔2
0q2) (2)

where we substitute inductance L for mass m; also the charge
q takes the place of position x, and flux 𝜑 = Lq̇ (inductance
times current) that of momentum p = mẋ. By a well-known
equation, we have L𝜔2

0 = 1∕C, so that the spring constant
becomes inverse capacitance. Note that the oscillator resonant
frequency, 𝜔0, will also be Larmor frequency in our later
discussion.

Ladder Operators for Cavities

Conversion of these Hamiltonians to quantum mechanical
form requires the introduction of ladder operators for the
quantized harmonic oscillator, which we accomplish, first, by
noting that (owing to free commutation in classical dynamics)
the classical Hamiltonian 1 can be written as 1/2m times
the product of p+ im𝜔0q (having dimensions of momentum)
and its complex conjugate, p− im𝜔0q. Replacement of the
conjugate variables p and q by the corresponding quantum
operators (denoted by circumflex) and dividing by the quantity√

2mℏ𝜔0 yields the dimensionless ladder operators

â† = (p̂ + im𝜔0q̂)∕
√

2mℏ𝜔0 (3)

â = (p̂ − im𝜔0q̂)∕
√

2mℏ𝜔0 (4)

We here follow Dirac’s convention for the placement and
signs of imaginary quantities; elsewhere, these operators are
often written iâ† and − iâ. Corresponding operators for the LC
oscillator are gotten by the substitutions that convert between
equations (1) and (2):

â† = (�̂� + iL𝜔0q̂)∕
√

2Lℏ𝜔0 (5)

â = (�̂� − iL𝜔0q̂)∕
√

2Lℏ𝜔0 (6)
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From these we obtain directly the expression for magnetic
flux in the oscillator:

�̂� =
√
(Lℏ𝜔0∕2)(â† + â) (7)

Their Relation to Ladder Operators for Spins

Photon Swapping and the Spin-exchange Hamiltonian. We
exploit the parallel between â and â†, and the familiar ladder
operators, Î− and Î+ , for spins, by examining the spin-exchange
term (for a pair of spins 1/2, labeled 1 and 2) which appears
in the dipole coupling Hamiltonian, as well as that for strong
scalar coupling, Î(1)+ Î(2)− + Î(1)− Î(2)+ . This is called the flip–flop
term, since, for a pair of oppositely directed spins, it inverts
the values of the z component angular momentum. Inasmuch
as the lifting of a spin, from its ground state to its excited
state, occurs by absorption of a photon, the flip–flop process
is just the exchange of a photon between spins. For different
orientations of spins, the following examples are illustrative:

Î1
+ Î2

−|𝛽𝛼⟩ = |𝛼𝛽⟩; Î1
+ Î2

−|𝛼𝛼⟩ = 0; Î1
− Î2

+|𝛼𝛽⟩ = |𝛽𝛼⟩ (8)

Cavity Operators for Creation and Annihilation of a Photon. We
begin by stating without proof that the ladder operators, â† and
â, act as follows, upon states of the quantum oscillator:

â†|n⟩ = √
n + 1|n + 1⟩; â|n⟩ = √

n|n − 1⟩ (9)

Specifically, â†, called the creation operator, lifts the occupa-
tion number by unity and multiplies the resulting ket by the
scalar

√
n + 1. The action of â (the annihilation operator) fol-

lows from the second equation above.

The Exchange of a Photon between a Spin and a Cavity. We next
write the operator portion of the Hamiltonian for exchange of a
photon between a spin and an oscillator, by analogy to photon
exchange between two spins:

(â† Î(i)− + âÎ(i)+ )|n, 𝛼⟩ = √
n + 1|n + 1, 𝛽⟩ (10)

That is, the initial state |n, 𝛼⟩, comprising a cavity with n
photons, and a spin up, is converted into the state |n+ 1, 𝛽⟩,
with n+ 1 photons in the cavity, and the spin down. The
spin emits a photon, which is captured by the cavity, whose
occupation number increases by one. Only the term â† Î(i)− is
responsible here; the other term, âÎ(i)+ , simply zeros the spin
state, in accord with its well-known rules of operation. We also
write

(â† Î(i)− + âÎ(i)+ )|n, 𝛽⟩ = √
n|n − 1, 𝛼⟩ (11)

to show the action of the term âÎ(i)+ , with the capture of a photon
from the cavity by the spin. Note that our choice of the intu-
itive operator pairings, â† Î(i)− and âÎ(i)+ , corresponding to |𝛼⟩ as
the excited spin state, implies a negative gyromagnetic ratio,
for example, for an electron. This will be reversed in subsequent
examples when we consider the proton spin.

The Jaynes–Cummings Model and its
Application to NMR
A Simple Hamiltonian

Having these preliminaries in hand, we proceed with the quan-
tized oscillator and the Jaynes–Cummings Hamiltonian. For a
complete description of the NMR experiment, we divide the
Hamiltonian into three terms, two describing the nuclear spin
and the RF coil in mutual isolation, and a third – a coupling
term – which specifies their interaction; similar equations to
ours, but for electron resonance, are found in Louisell’s book.11

In the first two terms, we set the Larmor frequency and the
oscillator frequency both to the value 𝜔0. The coil is presumed
lossless; we also omit relaxation. For the energy of the spin we
have the Zeeman Hamiltonian, and for the cavity, the product
of occupation number n and the photon energy ℏ𝜔0:

1 = −ℏ𝜔0 Îz (12)

2 = ââ†ℏ𝜔0 = nℏ𝜔0 (13)

To write the interaction, we recall the operator for magnetic flux
in the coil, from equation (7) above.

For the interaction, we assume that the coil is single-turn
Helmholtz, its and approximate its magnetic field by the flux
divided by twice the window aperture (in meters squared).
Using the expression for flux from equation (7), this leads to

3 = −ℏ𝛺0
2
(â + â†)(Î+ + Î−) (14)

for the familiar interaction term −𝝁 ⋅B=−𝜇xBx, with 𝛺0 =√
ℏ𝜔0L∕2∕2𝜎 where 𝜎 is the window aperture, and we assume

an x-directed RF field, using the identity Îx = (Î+ + Î−)/2.
The quantity 𝛺0 is called the Rabi fundamental frequency; as

discussed below, it sets the frequency of Rabi oscillation when
a single spin is present in the cavity. It is also apparent from
equation (14) that 𝛺0 serves as the coupling constant between
spins and cavity. Note that its dimensions, hertz, are the same
as the familiar spin–spin coupling constant J.

Then the entire Hamiltonian for the spin and coil combi-
nation is the sum of terms 1 +2 +3; since the cavity is
considered lossless, we omit any coupling to a heat reservoir. We
then invoke, without proof, the quantum machinery for trans-
formation to the interaction picture, transforming with the sum
1 +2, which leaves us with only 3 remaining. The behav-
ior of this term under transformation is now described.

The Jaynes–Cummings Approximation

Multiplying out the operators in equation (14) gives four
distinct terms −âÎ−, â† Î+, âÎ−, and â† Î−, – of which two are the
flip–flip terms introduced above, corresponding to emission
of a photon by the spin and absorption by the cavity, or vice
versa. These are zero-quantum terms, which conserve energy,
and experience no alteration under the transformation to the
interaction frame, provided that the cavity is tuned exactly to
the Larmor frequency of the spin; in particular, they acquire
zero-frequency shift. Useful discussions may be found in
expositions of the theory of lasers.12,13
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The other two terms represent simultaneous emission or
absorption by both atom and cavity; these are two-quantum
terms, which do not conserve energy. Under transformation to
the interaction frame, these terms become oscillatory at twice
the Larmor frequency.11–13

The Jaynes–Cummings approximation consists in discard-
ing the two-quantum terms; in laser theory this is called the
rotating wave approximation13 and is analogous to the com-
mon rotating frame transformation in magnetic resonance, in
which zero frequency terms are kept and terms at twice Larmor
discarded.

We now write the J–C Hamiltonian in matrix form for a sin-
gle spin, coupled to a coil,

|0, 𝛼⟩ |0, 𝛽⟩ |1, 𝛼⟩ (15)

3 = −ℏ𝛺0∕2(â† Î+ + âÎ−) =
⎡⎢⎢⎣
0 0 0
0 0 −ℏ𝛺0

2
0 −ℏ𝛺0

2
0

⎤⎥⎥⎦
where the basis vectors are indicated by kets above the matrix,
corresponding to (i) spin and cavity both in their ground states,
(ii) excited spin with cavity in its ground state, and (iii) spin
in its ground state with excited cavity. Because of our interest
in proton NMR, we have here chosen the gyromagnetic ratio
positive; the excited spin state is |𝛽⟩, and we must pair â† with
Î+, and â with Î−.

The Propagator for the Jaynes–Cummings Hamiltonian

3 is block diagonal, comprising two submatrices of dimen-
sions 1× 1 and 2× 2. The 2× 2 submatrix is mathematically
identical to the Pauli matrix 𝜎x multiplied by −ℏ(𝛺0/2); yet it
operates not only upon the spin but the cavity as well. Since the
block elements do not interact when the matrix is exponenti-
ated, the Schrödinger equation for 3 can be solved exactly, to
give the propagator or time evolution operator:

P = exp
(
− i
ℏ
3t

)
=
⎡⎢⎢⎢⎣
1 0 0

0 cos𝛺0t∕2 i sin𝛺0t∕2

0 i sin𝛺0t∕2 cos𝛺0t∕2

⎤⎥⎥⎥⎦
(16)

The integrability of the Schrödinger equation sets the
Jaynes–Cummings model apart from most quantum mechani-
cal problems involving the interaction of radiation and matter,
where exact solutions are not obtainable in closed form, and
one must resort to perturbation theory.

Spontaneous Emission by an Inverted Spin, and Rabi Oscillation.
If we express our basis elements as column vectors,

|0, 𝛼⟩ = ⎡⎢⎢⎣
1
0
0

⎤⎥⎥⎦ ; |0, 𝛽⟩ = ⎡⎢⎢⎣
0
1
0

⎤⎥⎥⎦ ; |1, 𝛼⟩ = ⎡⎢⎢⎣
0
0
1

⎤⎥⎥⎦ (17)

we can evolve the system, starting from a condition of the spin
excited:

exp
(
− i
ℏ
3t

) |0, 𝛽⟩ = cos 𝛺0t
2

|0, 𝛽⟩ + i sin 𝛺0t
2

|1, 𝛼⟩ (18)

This equation resembles that for rotation of a spin 1/2 about
the x axis14; but it describes not a rotation, rather a concerted
transition of the spin and cavity – called vacuum Rabi oscilla-
tion –15 in which a state comprising an excited spin inside a
cavity in its ground state transforms to a state comprising a spin
in its ground state inside an excited cavity. (The term ‘vacuum’
ensures that there is no external injection of a RF field and will
be dropped in the sequel.) This process is an example of spon-
taneous emission – pure quantum behavior, not described by
the classical Bloch equations, which predict, absent relaxation,
that an inverted spin does not evolve. To reinforce the point,
we now show explicitly, by density matrix, that no transverse
magnetization develops in this scenario.

The Same Example Treated by Density Matrix; Reduced Den-
sity Matrices. For a single spin inverted, and cavity in its
ground state, the density operator is simply the outer product
|0, 𝛽⟩⟨0, 𝛽|, written in matrix form as

𝜌(init) =
⎡⎢⎢⎣
0 0 0
0 1 0
0 0 0

⎤⎥⎥⎦ (19)

Evolving this with the propagator P of equation (16) accord-
ing to 𝜌(t)= P(t)𝜌(0)P− 1(t), and using the abbreviations
s= sin(1/2)𝛺0t and c= cos(1/2)𝛺0t, leads to

𝜌(t) =
⎡⎢⎢⎣
0 0 0
0 c2 −isc
0 isc s2

⎤⎥⎥⎦ (20)

(This is essentially the solution of an appropriate Liouville
equation for the spin and cavity.) To separate the behavior of
the spin from that of the cavity, we calculate the reduced den-
sity matrices16 – that for the spin obtained by tracing 𝜌(t) over
the cavity variables, and that for the cavity by tracing over the
spins. For example, given a density matrix describing two par-
ticles, the general element is written ⟨n, m′|𝜌|k, l′⟩ where the
indices of one particle are primed and the other unprimed. For
a generic element of the unprimed particle, we have ⟨n|𝜌|m⟩ =∑

k′⟨nk′|𝜌|mk′⟩. Likewise, for the primed particle ⟨k′|𝜌|l′⟩ =∑
n⟨nk′|𝜌|nl′⟩. Carrying this out for equation (20) gives

𝜌(spin)(t) =
[

s2 0
0 c2

]
(21)

where 𝜌
(spin)
11 = ⟨𝛼|𝜌(spin)|𝛼⟩, and so on. For clarity we give

details of the calculation, with reference to equation (20) and
to the ordering of states in equation (15):

⟨𝛼|𝜌(spin)|𝛼⟩ = ⟨𝛼, 0|𝜌|𝛼, 0⟩ + ⟨𝛼, 1|𝜌|𝛼, 1⟩ = 0 + s2 (22)

⟨𝛽|𝜌(spin)|𝛽⟩ = ⟨𝛽, 0|𝜌|𝛽, 0⟩ = c2 (23)

In a similar manner, the off-diagonal elements, correspond-
ing to spin coherence, are shown to vanish, since, for example⟨𝛽, 0|𝜌|𝛼, 0⟩= 0 and the term ⟨𝛽, 1|𝜌|𝛼, 1⟩ simply does not
appear in the density matrix of equation (21).
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Figure 1. Evolution of a longitudinal magnetization due to a single spin
in a lossless cavity, following inversion. A single spin is initially inverted
and returns to its equilibrium orientation directly by spontaneous emis-
sion. The magnetization remains longitudinal throughout; no transverse
moment develops. The solid trace shows the z-component (longitudinal)
magnetization as a function of time; the dotted trace shows the oscillator
occupation number. The horizontal axis (time) is denominated in units of
the Rabi fundamental period

A similar calculation for the cavity yields

𝜌(cavity)(t) =
[

c2 0
0 s2

]
(24)

Again, note the absence of coherence. The general expres-
sion for the mean cavity occupation number is N =

∑N
n=1

(n − 1)𝜌(cavity)
nn ; in the case at hand, this reduces simply to

𝜌
(cavity)
22 for the number of photons. However, the presence of

a photon here does not imply the existence of an oscillatory
field, which requires for its existence a coherent superposition
of cavity states, as will appear in examples below.

Further Illustration of Rabi Oscillation/Nutation. To further
illustrate Rabi oscillation (also called Rabi nutation), we calcu-
late the expectation value of the z-component magnetization
Mz = 𝛾ℏ⟨Îz⟩, with ⟨Îz⟩= tr𝜌(spin)(t)Îz .

Expanding the squared trigonometric terms in equation (21)
as 1/2(1± cos𝛺0t) yields directly 𝛾ℏ⟨Îz⟩=− ((1/2)𝛾ℏ)cos𝛺0t,
where the negative sign accounts for the fact that we start with
the spin in the state |𝛽⟩. Then our future labor is greatly simpli-
fied by renormalizing the constants so that the amplitude of the
magnetization is simply the number of spins, yielding in this
instance Mz =− cos𝛺0t.

Figure 1 shows the longitudinal magnetization (blue trace),
and the cavity occupation number (dotted black), for two peri-
ods of the Rabi fundamental frequency.

The spin, initially excited, gradually returns to its ground
state by spontaneous emission of a photon – with the frac-
tional values of occupation number representing appropriate
linear superpositions of the states |0, 𝛽⟩ and |1, 𝛼⟩ – finally
arriving at the occupation number n= 1. The cavity, now fully
excited, then reexcites the spin, gradually transferring the
photon back to it, to rearrive at occupation number n= 0; the
system has now completed one full period of Rabi nutation.

The entire process then recommences, and, in the absence of
any loss mechanism, continues indefinitely, beyond the two
Rabi periods we have shown. That there are no transverse
components of magnetization (i.e., coherences), and no losses,
means that we may picture a z-directed vector undergoing a
repetitive process of shrinkage and regrowth, as it passes from
negative to positive values, and back again. Since the classical
Bloch equations, with relaxation omitted, predict a Bloch
vector of constant length, this is an example of nonclassical
behavior.

The Rabi Fundamental Frequency and Cavity Enhancement

We have already noted that 𝛺0 not only determines the rate of
Rabi oscillation but is also the coupling constant between spins
and cavity. We must therefore know its magnitude if we are to
assess the degree of cavity-enhanced spontaneous emission.

Cavity enhancement was introduced in our opening para-
graphs. Qualitatively, it may be viewed as a manifestation of the
greater oscillatory field strength produced by a photon inside a
resonant cavity, relative to that of a photon in free space. Con-
fining the photon to a cavity concentrates its energy in a small
volume, increasing the local field strength per photon, which
also serves to measure the coupling constant between atom and
cavity. The stronger the coupling, the faster the rate of sponta-
neous emission – ergo cavity enhancement. In the case of NMR,
of course, we have not a cavity but an LC oscillator. The field
is nonetheless concentrated in the vicinity of the inductor, so
we anticipate significant enhancement, which we measure by
comparing the Rabi frequency in the coil with the rate of spon-
taneous emission in free space.

To calculate a numerical value of 𝛺0, we choose a static
polarizing field strength of 14.1 T, that is, a proton Larmor fre-
quency of 600 MHz. We next specify a reasonable Helmholtz
coil, of a single turn, with round windows of diameter 1.27 cm,
giving a measured inductance L of 77 nH. Using the def-
inition given above, following equation (14), this leads to
a value 𝛺0 = 1.31× 10− 4 s− 1 corresponding to an inverse
emission period (for spin inversion in the Rabi cycle) of
4.17× 10− 5 s− 1. Comparing this to the inverse lifetime for
spontaneous emission of an isolated spin in free space at
14.1 T –𝜇0ℏ𝛾

2𝜔3/πc3 = 6× 10− 21 s− 1, we find a difference, that
is, a cavity enhancement, of an astonishing sixteen orders of
magnitude. Jaynes and Cummings found a cavity of enhance-
ment of ∼ 107 for the ammonia maser. We attribute our larger
enhancement to the small size of our coil relative to that
of their cavity, leading to a relatively higher concentration
electromagnetic flux per photon.

Radiation Damping: J–C Evolution of a Spin in the
Transverse Plane

With this much preparation, we now embark upon the direct
study of radiation damping, starting with a density matrix cal-
culation for the initial condition of a spin tipped by π/2 about
the y axis of a rotating coordinate frame. Since a spin inversion
corresponds to absorption of an entire photon, a tip angle of
π/2 appears to represent the absorption of half a photon – a
physical impossibility. In fact, the photon state will always be a
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linear superposition of the cavity ground and first excited states,
weighted so that the mean occupation number never exceeds
1/2. The starting density matrix is

𝜌(init) = 1∕2
⎡⎢⎢⎣

1 −1 0
−1 1 0
0 0 0

⎤⎥⎥⎦ (25)

with the elements ordered as in equation (15). The matrix in
equation (25) can also be written as the direct product |0⟩⟨0|
with the sum of (minus) the Pauli matrix 𝜎x plus the identity
matrix of dimension two. In contrast to our earlier example, we
have spin coherence at the outset, which will give rise to cav-
ity coherence, in a process recognizably analogous to classical
radiation damping.

The density matrix, following evolution through time inter-
val t, is

𝜌(t) = 1∕2
⎡⎢⎢⎣

1 −c is
−c c2 −isc
−is isc s2

⎤⎥⎥⎦ (26)

leading to the reduced density matrices

𝜌(spin)(t) = 1∕2
[

1 + s2 −c
−c c2

]
(27)

and
𝜌(cavity)(t) = 1∕2

[
1 + c2 is
−is s2

]
(28)

Figure 2 shows the temporal evolution from equations (27)
and (28); the solid green and blue traces give, respectively, the
transverse and longitudinal magnetizations, Mx and Mz; the
dotted blue trace is the cavity one-quantum coherence, and
the dotted black, the photon occupation number; the duration
is two periods of the Rabi fundamental. The motion of the
Bloch vector remains nonclassical, with the longitudinal mag-
netization evolving at the Rabi frequency and the transverse at
half that value.

Since the energy of the spins is proportional to negative Mz,
the growth of Mz and the corresponding diminution of Mx rep-
resent the flow of Zeeman energy – and the photon – from
spin to cavity. This coincides with the growth of cavity coher-
ence and the photon occupation number, both of which achieve
their maximum amplitudes when Mx is zero, at which point
(so to speak) half a photon is captured by the cavity. It is seen
that spin coherence and cavity coherence exchange with each
other directly, that is, one reaches achieves its maximum ampli-
tude when the other reaches zero. Although we have nowhere
invoked Faraday’s law of induction, this exchange of coherences
is seen to parallel the appearance of the induced RF field in an
NMR coil, in the classical description of radiation damping.5
The transfer of Zeeman energy also parallels that in the classical
description.

However, according to customary notions, any process
designated as damping must embody some intrinsic dissipa-
tion; this is absent in our quantum description, since we have
explicitly omitted the resistance of the coil. How can quantum
mechanics describe radiation damping in a lossless coil? To
resolve this dilemma, we must slightly expand our conception
of damping and assert that the critical process is exactly the
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Figure 2. Prototypical radiation damping for a single spin in a lossless cav-
ity: the evolution of transverse and longitudinal magnetizations, following
an initial rotation of π/2. The solid green trace is Mx (transverse), the solid
blue Mz (longitudinal). The dotted traces show the cavity one-quantum
coherence (blue) and the cavity occupation number (black). The horizon-
tal axis (time) is the same as in Figure 1, in units of the Rabi fundamental
period

transfer of a photon from spin to coil, and that the subsequent
fate of the photon is of secondary importance. Pursuing this
line of thought, we invoke the Wigner–Weisskopf theory of
spectroscopic linewidth17: the key factor is the rate of emission
of a photon by an atom, not the evolution of the photon once
emitted. In fact, we have elsewhere shown2 that cavity losses
can be included in a quantum model; for now, their absence
simply means that emission is followed by reabsorption, in an
endless cycle.

Adding More Spins to the Calculation

Our calculations so far are for a single spin; but he Jaynes–
Cummings Hamiltonian is straightforwardly modified18 to
accommodate multiple spins, by a simple summation, as
follows:

3 = −ℏ𝛺0
2

N∑
j=1

(â† Î(j)+ + â Î(j)− ) (29)

Analytic solution is no longer straightforward, but numer-
ical results are readily gotten; and the similarity, noted above,
between quantum and classical models of radiation damping,
obtains as well for multiple spins, as illustrated, for example,
in Figure 3. This shows, for two spins, the transfer of Zeeman
energy, via spin coherence, from the precessing magnetization
to the tuned cavity, with the concomitant appearance of an
induced oscillatory field, manifest as magnetic flux.

The transverse magnetization Mx is shown in green; the net
cavity one-quantum coherence (to be discussed below) is given
in dashed blue. The dashed black trace gives the expectation
value of induced magnetic flux in the coil, normalized to the
square root of the occupation number. Naturally, the time
course of flux directly tracks that of the induced magnetic field.
Since the transverse moment oscillates at one half the Rabi
frequency, and since the cavity is assumed lossless, the zero
of transverse moment coincides with the maximum induced
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Figure 3. Radiation damping for a pair of spins in a lossless cavity: the
evolution of transverse magnetization and cavity coherence and magnetic
flux, following an initial rotation of π/2. The solid green trace is Mx (trans-
verse), the dotted blue trace is the cavity one-quantum coherence; the black
trace is the magnetic flux induced in the cavity. Time axis as in Figures 1
and 2. (Reproduced with permission from J. Tropp, J. Chem. Phys., 2013,
139, 014105-1. Copyright 2013, AIP Publishing LLC)

field; this matches the result in Figure 2, where the zero of Mx
occurs at peak occupation number. Overall, Figure 3 illustrates
once more the dynamics of NMR transduction, particularly the
conversion of spin coherence to cavity coherence, about which
we have remarked above, as well as the transfer of Zeeman
energy from the spins to cavity, to create an oscillatory field.
These processes together constitute the essential elements of
radiation damping.

Buildup of Cavity Coherence with Multiple Spins. More details
of the interaction of multiple spins with a cavity may be gotten;
for example, the detailed development of one-quantum cavity
coherence is shown in Figure 4.

When multiple spins are present, several coherences of the
type 𝜌(cavity)

n,n+1 are formed sequentially in time; for instance, in the
case of five spins, we have 𝜌(cavity)

12 , 𝜌(cavity)
23 , on up to 𝜌

(cavity)
56 . This

temporal evolution is illustrated in the figure, with the coher-
ences of ascending indices (solid traces) labeled with the color
sequence navy, red, green, violet, cerulean (for 𝜌(cavity)

12 , 𝜌(cavity)
23 ,

etc.) A simple summation of these yields the dashed navy trace,
roughly approximating a sinusoid; a summation weighted by
the square roots of the occupation numbers gives the dashed
black trace, closer to sinusoidal form, and representing the
induced magnetic flux in the coil.

We have already noted, in our discussion of Figure 2, that
mutual exchange of spin and cavity one-quantum coherences is
characteristic of the process of radiation damping. Then since
spin coherence, has, for a single-spin species, an invariable sinu-
soidal dependence upon time, the net cavity coherence must
have a similar dependence. The calculations shown in Figure 4
demonstrate, for multiple spins, the complexity of cavity behav-
ior, in which many individual coherences, of seemingly arbi-
trary form, combine to form a sinusoid.

In fact, a simpler version of this process holds for the results
in Figure 3, where the net sinusoidal cavity coherence is in
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Figure 4. Evolution of cavity one-quantum coherence for five spins in a
lossless cavity, following initial rotation of π/2. Individual coherences of
the type 𝜌

(cavity)
n,n+1 , for n= 1 to n= 5. Further details given in text. The color

scheme, for increasing n, is navy, red, green, violet, cerulean. The dotted
blue trace is the direct summation of the individual coherences; the dotted
black trace is the weighted summation representing the induced magnetic
flux in the cavity/coil. Time axis as in previous figures. (Reproduced with
permission from J. Tropp, J. Chem. Phys., 2013, 139, 014105-1. Copyright
2013, AIP Publishing LLC)

fact the resultant of two oddly shaped coherences, 𝜌(cavity)
12 and

𝜌
(cavity)
23 , which do not themselves appear in the figure.

Stimulated Emission from Multiple Spins. Figure 5 illustrates
stimulated emission for increasing numbers of spins, ini-
tially tipped into the transverse plane. We plot the transverse
magnetization against time for a single period of the Rabi
fundamental, and take the position of the first zero crossing as
a measure of the emission rate. Starting with two spins (solid
blue trace), each successive curve represents addition of a
single spin, ending at seven (dotted red trace).

The zero crossing occurs at progressively shorter times
as more spins are added. To understand this, refer back to
equation (29), and calculate the matrix element for emission of
a single photon, from the cavity state |n− 1⟩ to |n⟩ as:

⟨n|3|n − 1⟩ = ℏ
𝛺0
2
√

n (30)

The enhancement factor
√

n is well known in quantum field
theory, as the marker of stimulated emission, when n> 1.19

Strictly speaking, a single spin undergoing Rabi nutation in
the presence of a cavity field comprising n− 1 photons, will
experience this enhancement, giving a Rabi frequency of
𝛺n =

√
n𝛺0; but our situation, with multiple spins, is more

complicated. Here, the value of n increases as each photon is
emitted; this in turn increases the emission rate for succeeding
photons. Despite the seeming complexity, a system with mul-
tiple spins undergoes an orderly process of Rabi oscillation,
with more spins giving ever faster nutation, as is seen from
the individual traces in the figure. Finally, it is worth noting in
this context that a spin emitting into a cavity initially devoid
of photons [n= 1 in equation (30)], will evolve at the Rabi
fundamental frequency, 𝛺0.
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Figure 5. Stimulated emission for n spins, with n= 2 to n= 7, illustrated
via transverse magnetization, following an initial rotation of π/2. The rela-
tive rapidity of emission is gauged by the first zero-crossing of the magne-
tization. The number of spins increases in color order blue, green, red, and
from solid to dotted trace. Further discussion is given in the text. Time axis
is as in previous figures, except only a single Rabi period is shown. (Repro-
duced with permission from J. Tropp, J. Chem. Phys., 2013, 139, 014105-1.
Copyright 2013, AIP Publishing LLC)

In fact, it is also shown20 that for samples of n spins, with
n>> 1, the net moment will nutate with the enhancement fac-
tor

√
n, a fact we will utilize in later calculations. In light of this,

it is interesting to compare the maximum and minimum times
for the first zero crossing in the figure, at approximately 0.39/𝛺0
and 0.21/𝛺0. Their ratio is 1.86, which we compare to the ratio
for the square roots of numbers of spins,

√
7∕2 = 1.87. Without

arguing the significance of the numerical agreement, it is clear
that more spins mean faster emission – a direct result of stimu-
lated emission. We later show that the enhancement in realistic
NMR samples may amount to several orders of magnitude.

Quantum Mechanics and Radiation Damping
We have now established sufficient quantum basics to take up
the question of radiation damping; but this will also require a
brief review and revision of the classical theory.

Classical Radiation Damping, without the Filling Factor

A revised classical theory is given here as a necessary prelude to
a quantum mechanical calculation. In the usual theory of radi-
ation damping, a filling factor (so called) is introduced, to write
Faraday’s law for an NMR sample that does not completely fill
the detection coil. Unfortunately, the literature gives multiple
definitions of filling factor, many of them mutually incompat-
ible, and none admitting of routine measurement. We there-
fore eliminate it, using the results of reciprocity theory21,22 to
write the radiation damping constant in terms of the coil effi-
ciency – essentially a measure of the power needed to nutate the
magnetization, in a specified time, through an angle π. The dis-
cussion of power will also require that we abandon the notion
of a lossless coil and introduce resistance, although within the
context of a classical coil.

We begin with an initial magnetization M0, which has been
tilted through an angle 𝜗, to give longitudinal and transverse

components M0 cos 𝜗 and M0 sin 𝜗; we write the equation
describing the balance of Zeeman energy Ez, as the spins
(occupying a volume V) dissipate power in the coil’s resistance
(unspecified as yet) and tilt back toward the vertical:

dEz
dt

= M0VB0 sin 𝜗
d𝜗
dt

(31)

Then for a sample within a region of uniform B1 field, the
electromotive force, denoted 𝜀, induced in the coil by Larmor
precession, is the product of the Larmor frequency, the B1 field
per unit current, the sample magnetization, and the volume,21

with the imaginary factor i to provide the correct phase rela-
tionship

𝜀 = i𝜔0B1(1)VM0 sin 𝜗 (32)

The Larmor frequency is 𝜔0 and the transverse magnetiza-
tion MT is given by M0 sin 𝜗, where 𝜗 is the tip angle. The sign
of the imaginary can be positive or negative, depending on the
choice made for the time factor in Maxwell’s equations. Then
since the intrinsic resistance R of the detection coil is effectively
doubled by impedance matching the coil to its feed line,23 the
net power dissipated in the coil is (1/2)𝜀2/2R, where the factor
1/2 gives the rms value. Equating this with − dEz/dt (power is
positive, but the energy is decreasing) leads to

−dEz
dt

= −M0VB0 sin 𝜗
d𝜗
dt

= {𝜔0M0 sin 𝜗VB1(1)}2

4R
(33)

or, for small tip angles (sin 𝜗≈ 𝜗), straightforwardly to

d𝜗
dt

= −k𝜗

k = 𝛾𝜔0M0V𝜁2∕4 (34)

where k is the radiation damping constant and we have intro-
duced the symbol 𝜁 = B1(1)∕

√
R for the efficiency of the coil,

first given by Hoult and Lauterbur.24 This is also equal to the
total linear B1 (not a rotating component) produced per unit of
power absorbed by the probe, and, as such, is readily measured
by determining the power needed for a π pulse. Note also that
for 𝜗= 0, we have �̇�= −k.

Although equation (33) now contains R explicitly, it is impor-
tant that equation (31) can nonetheless be used without know-
ing the resistance, provided only that we supply a value of the
nutation rate �̇�.

Incidentally, with the definitions we have given, the damp-
ing constant may be written as a product of the factors:
the (classical) nutation rate per unit current present in the
coil – 𝛾B1(I)/2I – and a current – 𝜔0VM0B1(I)/2IR, equal in
this case to the emf of the sample divided by the total resistance
of the coil (intrinsic plus that from external load, coupled by
impedance matching).

Stimulated Emission and Total Signal Power

We use equation (31), for the balance the Zeeman energy, to cal-
culate the NMR signal power in various scenarios, using always
the same reference sample – neat water – but varying the nuta-
tion frequency according to diverse assumptions. This enables
the comparison of spontaneous and stimulated emission, with-
out the necessity of solving the Liouville equation for a lossy

1084 © 2016 John Wiley & Sons, Ltd. Volume 5, 2016



A Fully Quantum Mechanical Theory of Radiation Damping and the Free-induction Decay in Magnetic Resonance

coil.2 As noted at the outset, in our introductory paragraph, the
change in Zeeman energy comprises both the radiated power,
and that lost in the coil’s own resistance; these are equal on the
assumption of correct impedance matching.

We start with the formula for the magnetic dipole moment
of a water sample.

𝜇 = M0V = 1
2
𝛾ℏNMw(tanhℏ𝜔0∕2kT)πr2hw × 10−3 (35)

where N is the Avogadro number, Mw is the molarity of water
protons (110), r is the inside radius (in centimeter) of a 5 mm
Wilmad™ NMR tube determined from the manufacturer’s
outer diameter and wall thickness (0.43 mm), and hw is the
height of the model probe window, 1.27 cm. The value at
T= 298 K is 7.72× 10− 9 A m2. The multiplicative factor of 10−3

converts the volume to liters, as required by the use of molarity.
The Larmor frequency is 600 MHz.

We use an experimental value23 for the coil efficiency 𝜁 , cor-
responding to a pulse width of 6.8 μs at 21.4 W absorbed by
the probe: 𝜁 = B1∕

√
2Prms, where the power is doubled, since

the definition of efficiency specifies peak current, whereas the
measured power (e.g., from a spectrum analyzer) is typically
rms. We get 𝜁 = 2.64 × 10−4 T∕

√
watt. From the efficiency and

dipole moment, we calculate the radiation damping constant in
equation (34): k= 136.

Also, using the inductance of our model Helmholtz coil and
a coil quality (Q) factor of 200, when impedance matched (i.e.,
source loaded), the calculated coil resistance is 0.726𝛺, which
we will make use of presently.

Since the NMR signal5 has been historically considered to
arise from coherent spontaneous emission, we first calculate
the power for this case, in which the nutation rate is simply the
Rabi fundamental frequency, which applies (cf equation (30)
and discussion) when the cavity contains no photons at the
outset; Heitler gives a clear discussion of this point.19 From
equation (31), utilizing 𝜇=M0V with 𝜗= 0 and �̇�= 𝛺0, the
total dissipated power is 14.2 pW. Since the calculation is
made, not for individual spins emitting independently but for
the aggregate magnetization, we have an example of coherent
spontaneous emission.5,25

To calculate the peak power in radiation damping, we again
utilize equation (31), but with the nutation rate given by the
radiation damping constant, that is, 𝜗= 0, and �̇�= −k. This
maximizes the total dissipated power, at 14.8 μW.

We then argue that the increased power seen here – a full
six orders of magnitude greater than that for coherent sponta-
neous emission, – arises from stimulated emission. (Stimulated
emission does not require the active application of an external
field, but only the presence of photons in the cavity.) We there-
fore need the number of photons in the energized coil, which is
gotten from the energy equation of the inductor:

1
2

LI2 = nℏ𝜔0 (36)

with the maximum current I obtained from the emf
(equation (32)) divided by twice the coil resistance (2× 0.726
ohms= 1.45 ohms), since the voltage operates into the source-
loaded coil. The result is 5.7 mA, leading to n= 3.13× 1012.

Then recalling that 𝛺n =
√

n𝛺0, and using
√

n = 1.77 × 106,
the enhanced value of dissipation, 𝜇B0𝛺n, is calculated to be
20.0 μW.

This result, although entirely quantum theoretic, lies well
within 30% of the 14.8 μW, calculated from the measured coil
efficiency. We assert on this basis that quantum mechanics
offers adequate explanation, from first principles, of signal
strength in NMR.

New Perspectives in NMR Reception
A Magnetic Resonance and Quantum Optics

The Bloch equations (together with their descendants, the
optical Bloch equations) have reliably described both NMR
and quantum optics during half a century; as such, they
are emblematic of the close relation between the two disci-
plines. The present work also reaffirms that kinship, showing
how CQED can be used to explain the fine details of signal
formation and reception in NMR.

In fact, the first application of the Jaynes–Cummings model
to magnetic resonance was the proposal26 for magnetic res-
onance force microscopy (MRFM), wherein it was shown
theoretically how to couple a mechanical oscillator – a force
microscopy cantilever with a magnetic tip – to a single spin.
The coupling Hamiltonian was shown to be bilinear in ladder
operators for both spin and oscillator, so that with minor
modification, an electrical resonator could be substituted for
the mechanical. Thus, the genesis of the approach given here.

The current work also challenges a proposition long
held – that the strength of the NMR signal derives from
coherent spontaneous emission.5 We have presented calcula-
tions which (we believe) make an unmistakable case for the
essential role of stimulated emission. This is not done lightly,
and we believe that additional justification can be sought in
further discussion of the phenomenon of cavity enhancement.

Differing Views of Cavity Enhancement

The founding document of CQED is Purcell’s abstract on cavity
enhancement6; yet, his theory of this effect, which has dom-
inated the discussion of NMR reception for 60 years, differs
markedly from that proposed later by Jaynes and Cummings,1
which today constitutes the gold standard in quantum optics.
We sketch a comparison – necessarily incomplete – of the two
theories, with the goal of bringing the J–C model more into
the purview of NMR practitioners. Let us enumerate some
dichotomies.

Jaynes and Cummings start with quantization of the cavity
field (we convert their electric fields to magnetic) and then
write the interaction term, equivalent to our −𝝁 ⋅B1 which
couples a spin to the cavity. They discard from the coupling
Hamiltonian those terms which do not conserve energy, and
solve the resultant Schrödinger equation exactly, for arbitrary
nutation angles (e. g., π). Since the cavity field per photon is
much larger than that in free space, cavity enhancement is
automatically obtained.

Purcell, on the other hand, starts with the perturbation
expression for spontaneous emission of a spin in free space,
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including the factor of the density of states, as dictated by
the Fermi golden rule. Cavity enhancement is introduced
by the expedient of replacing the free space density of states
with the inverse spectral width of the cavity (in hertz), 𝜔0/Q,
that is, the cavity resonance frequency divided by its quality
factor, Q. Since Q contains the effective cavity resistance,
its introduction automatically introduces cavity dissipation
into the emission rate, which contravenes the usual quan-
tum theory of a lossy cavity27 in which the deterministic
Hamiltonian for spin-cavity coupling is separated from the
stochastic Hamiltonian for damping. In modern theory,
the transition rates of these two are independent of each
other, whereas in Purcell’s method they are not. In any case,
large nutations are not describable within the perturbation
regime.

Purcell’s theory was used by Bloembergen–Pound in their
exposition of radiation damping in NMR, and is consequently
well known. Bloembergen–Pound give a classical theory of
large nutations, based on Bloch’s equations; but their quantum
treatment, referring back to Purcell, is restricted to small
nutations. We believe that the method of Jaynes–Cummings
deserves to be better known in the NMR community, due to
its comparative directness, its ability to handle large tip angles,
and its ongoing important role in quantum optics.

The Transition from Quantum to Classical Behavior

It is perhaps surprising that the Bloch equations are not read-
ily derivable from the Jaynes–Cummings model, except under
quite restrictive conditions.28 This is because the Bloch opera-
tor describes an infinitesimal rotation of the spins, whereas the
J–C Hamiltonian describes not a rotation, but a concerted tran-
sition of spins and cavity. This accounts, on the whole, for the
instances of nonclassical behavior noted earlier. The imposition
of a so-called coherent, or Glauber29,30 state for the cavity allows
one to obtain the Bloch equations, since a Glauber state is an
eigenfunction of the cavity ladder operators; but the emergence
of a Glauber state, starting from Fock states of the cavity, is not
theoretically understood. Therefore, the question of the transi-
tion from quantum to semiclassical, or classical behavior, must
be considered as unresolved, in both magnetic resonance and
in quantum optics.
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