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Vincent Denolin,1 Céline Azizieh,2 and Thierry Metens1

RF spoiling is a well established method to produce T1-
weighted images with short repetition-time gradient-echo se-
quences, by eliminating coherent transverse magnetization
with appropriate RF phase modulation. This paper presents 2
novel approaches to describe signal formation in such se-
quences. Both methods rely on the formulation of RF spoiling
as a linear increase of the precession angle between RF pulses,
which is an alternative to the commonly used quadratic pulse
phase scheme. The first technique demonstrates that a steady
state signal can be obtained by integrating over all precession
angles within the voxel, in spite of the lack of a genuine steady-
state for separate isochromats. This clear mathematical frame-
work allows a straightforward incorporation of off-resonance
effects and detector phase settings. Moreover, it naturally in-
troduces the need for a large net gradient area per repetition
interval. In the second step, a modified partition method includ-
ing RF spoiling is developed to obtain explicit expressions for
all signal components. This provides a physical interpretation of
the deviations from ideal spoiling behavior in FLASH and echo-
shifted sequences. The results of the partition method in the
small flip angle regime are compared with numerical simula-
tions based on a Fourier decomposition of magnetization
states. Measurements performed with in vitro solutions were in
good agreement with numerical simulations at short relaxation
times (T1/TR � 32 and T2/TR � 4); larger deviations occurred at
long relaxation times (T1/TR � 114 and T2/TR � 82). Magn
Reson Med 54:937–954, 2005. © 2005 Wiley-Liss, Inc.
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The introduction of gradient echo techniques in MR imag-
ing has dramatically reduced scan times through the use of
very short repetition times, combined with low flip angles
to limit the spin system saturation. The clinical impact of
this acceleration has been considerable in terms of patient
comfort, motion artifact reduction, and new applications,
such as cine imaging of the heart or contrast-enhanced MR
angiography. However, the price paid for this is an in-
creased complexity of signal formation mechanisms,
which makes it difficult to characterize and control the
contrast behavior of fast gradient echo sequences.

At long repetition times (TR �� T2) the transverse magne-
tization vanishes irreversibly between consecutive pulses;
hence, the signal intensity is determined solely by the bal-
ance between longitudinal magnetization reduction due to

RF pulses and T1 recovery between pulses. In the steady-
state, these two mechanisms compensate each other, leading
to the well-known Ernst formula for signal intensity (1–3). At
very short echo-time this expression depends only upon the
flip angle, T1, and the repetition time, leading to a purely
T1-weighted contrast. The signal is maximized at � � �E �
arccos(E1) (Ernst angle) where � is the flip angle and E1 �
exp(�TR/T1). When TR becomes comparable or shorter than
T2, the remaining transverse magnetization at the end of each
repetition can no longer be neglected, even when a strong
gradient spoiler is placed at the end of each repetition inter-
val. Indeed, successive RF pulses are capable of partly refo-
cusing the magnetization, leading to spin, stimulated and
higher order echoes. If the amplitude and phase of RF pulses
and the net gradient area per TR are maintained constant
along the sequence, the resulting steady-state signal intensity
is proportional to T2/T1 (2); hence, the image contrast is
generally sub-optimal since this ratio is less differentiated
than the relaxation parameters themselves. For this reason,
several strategies have been developed that break the period-
icity in order to “spoil” the coherent magnetization at the end
of each repetition interval, as an attempt to restore the con-
trast properties of long-TR gradient echo techniques. A first
approach, known as gradient spoiling, consisted of linearly
varying the net gradient area per repetition interval (4,5). The
major drawback of this technique was the spatial depen-
dence of the net precession angle between pulses, giving rise
to bands with different signal intensities in the image if the
phase encoding gradient was used (4) or signal variations
from slice to slice if the varying gradient was set along the
slice selection direction. As already suggested by Crawley
and coworkers (4) and experimentally demonstrated by Zur
and colleagues (6), a solution for this problem consists of
substituting the varying net gradient area per TR with a linear
increase of the interpulse precession angle or, equivalently, a
quadratic variation of the RF and detector phases. Rapidly
this second approach, known as RF spoiling, has appeared to
be a robust and efficient solution for short-TR T1-weighted
gradient-echo imaging. It is presently available on all clinical
scanners.

Since the introduction of RF spoiling, several groups
have conducted theoretical studies to characterize signal
formation in such sequences. Most often the problem has
been studied with numerical simulations, either by calcu-
lating the magnetization time course for a large number of
isochromats and summing the resulting vectors (5–8) or,
more recently, by formulating the problem as the calcula-
tion of Fourier coefficients (9). Using these techniques, it
was possible to verify that the signal intensity reaches a
steady state, and to assess the influence of various param-
eters, including flip angle, relaxation times, and preces-
sion angle increment. Namely, high steady-state signals
were found for increments of the form (K/P)(2�), with K
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and P integer. Since numerical results are not easily gen-
eralized and do not provide much intuition about the
physical origins of the observed behavior, more qualitative
descriptions have been developed as well. These were
based either on the assessment of phase accumulation
along magnetization pathways (6) or approximations using
Fourier analysis and analogies with BURST sequences (8).
Finally, in Ref. (10), analytical calculations have been
conducted to derive a steady-state Fourier expansion of
the transverse magnetization and to evaluate the Fourier
coefficients for precession angle increments of the above-
mentioned form.

The present article brings additional elements to the
theoretical understanding of RF-spoiled gradient echo se-
quences. The first part of the article presents a new ap-
proach to solve the apparent paradox that, although RF
spoiled sequences are non-periodical, a steady-state signal
intensity can be established after a sufficient number of TR
intervals. By formulating the problem in terms of linearly
increasing precession angles instead of quadratically in-
creasing RF phase, we show that individual spins inside a
voxel do not reach a steady state, but integrating over all
possible precession angles in a voxel makes it possible to
obtain a stationary signal intensity. This formulation offers
several advantages, among which are a great mathematical
simplicity, the ability to incorporate off-resonance effects,
and a straightforward explanation of why a large net gra-
dient area per repetition interval is needed. In the second
part, more physical insight into the mechanisms of signal
formation is gained by expressing the RF-spoiled signal
intensity as a superposition of gradient, spin, and stimu-
lated echoes, using the partition method introduced ini-
tially by Kaiser and colleagues (11). This technique has
already been suggested as a qualitative or semi-quantita-
tive description of RF-spoiled sequences (2,3,6), but our
goal is to derive explicit expressions for all magnetization
components in order to quantify their interference as func-
tions of the precession angle increment. In the small flip
angle limit, this allows us to give a physical interpretation
of the peaks observed in the graph of signal intensity
versus precession angle increment. Also, the partition
method provides an interpretation of deviations from the
ideal spoiling behavior assumed previously for echo-
shifted sequences (12). In this sense, the present study can
be considered as an extension of Ref. (13), dealing with
coherent (i.e., non-spoiled) echo-shifted sequences. Nu-
merical simulations based on the calculation of Fourier
coefficients of the magnetization during the approach to-
wards steady state (2,9,14) are used to assess the accuracy
of signal intensities obtained with the partition method in
the small flip angle limit. Finally, the theoretical findings
are confirmed by in vitro experiments, and the links with
previous publications on this subject are discussed.

THEORY

The sequence structure considered in this paper is sketched
in Fig. 1. RF pulses are applied at a rate of 1 per TR and rotate
the magnetization by � about the x axis. The peak of the echo
signal (or the origin of k-space in the readout direction)
occurs at time TE after each RF pulse. Between pulses the
magnetization vector precesses by � under the effect of ap-

plied magnetic field gradients and permanent off-resonance
effects (such as field inhomogeneity or chemical shift), and
�n as a consequence of RF spoiling.

For a reason that will be clarified later, we consider only
sequences with a “large” net gradient area per TR (i.e.,
inducing a phase spread larger than 2� across a voxel).
This area is kept constant along the sequence, that is, the
gradient-induced precession angle, noted �g, is the same in
all repetition intervals. This implies that phase encoding
gradients are properly rewound. Since the slice thickness
is generally larger than the in-plane voxel size, setting the
uncompensated gradient along the slice-selection direc-
tion is usually less demanding than in plane directions in
terms of gradient performance. Given these constraints,
different contrasts can be generated by varying the amount
of gradient-related precession occurring before and after
the signal acquisition, noted �k�g and (k � 1)�g, respec-
tively. The most common option consists of directly sam-
pling the free induction decay (FID) generated after each
pulse (k � 0); this is usually referred to as GRASS or
N-FFE in the coherent case, and (spoiled) FLASH, spoiled
GRASS, T1-FFE, or SPGR in the spoiled version (2,10).
Setting the large uncompensated gradient before the echo,
rather than at the end of the repetition interval, yields the
so-called CE-FAST (15), PSIF, or T2-FFE (2) sequence (k �
�1). TR-shifted echoes (16,17), or ES-FFE sequences (13),
are generated when the gradient area before data sampling
is taken to be the opposite of the net gradient area per TR
(k � �1), and consequently the gradient area after echo
collection is 2 times the total gradient area (k � 1 � 2).
More generally, several echoes with various coherence
orders (i.e., different k values) can be produced in each
repetition interval (18–21).

Permanent off-resonant effects are characterized by their
frequency offset 	
, leading to a precession angle of 	
TE
between the RF pulse and the acquisition window center,
and 	
(TR � TE) between the readout and the end of the
repetition interval. Flow and diffusion effects are not con-
sidered in this article.

FIG. 1. Schematic view of spoiled gradient-echo sequences. Each
RF pulse rotates the magnetization vector by � around the x axis.
During the delay TE between the n-th excitation and the n-th read-
out, the magnetization vector experiences a precession angle of
�k�g due to applied gradients and ��TE as a consequence of
permanent off-resonance effects, such as field inhomogeneity or
chemical shift. During the second part of the repetition interval, that
is, the delay TR-TE between the n-th excitation and the (n � 1)-th
excitation, the magnetization precesses by (k � 1)�g due to applied
gradients, and 	w(TR-TE) as a consequence of permanent off-
resonance effects. Spoiling is achieved by adding a variable pre-
cession angle �n at the end of each repetition interval. FLASH
corresponds to k � 0, and echo-shifted sequences to k � 1. The
magnetization vector just after the n-th RF pulse is noted Mn

�.
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Spoiling is achieved by introducing an additional pre-
cession angle �n which occurs after data acquisition, is
position-independent, and increases linearly with the
pulse index n:

�n � �0 � n�. [1]

The detector phase is set to k�n�1 to ensure that the signal
reaches a steady state both in amplitude and in phase, as
demonstrated below. Note that our formulation, involving
invariant RF pulse phases and linearly increasing preces-
sion angles, is not a direct representation of the most
common implementation of RF spoiling, that is, a qua-
dratic pulse phase variation combined with a detector
phase set to that of the (n � k)-th pulse. The equivalence
between both approaches, which was already mentioned
in Ref. (6) in the case of k � 0, is proved formally in
Appendix A. Our formulation was chosen for its mathe-
matical simplicity and the resulting ease of interpretation.

Pseudo-Steady State for Local Magnetization Vectors

For a fixed value of the precession angle � due to gradients
and permanent off-resonance effects (i.e., for a fixed loca-
tion in the voxel), and under the assumption of instanta-
neous RF pulses, the Bloch equations yield the following
recurrence for the magnetization states just after RF pulses:

Mn�1
� ��
 � A�� � �n
Mn

���
 � B [2]

where

A��
 � Rx,�E�TR
P��


B � �1 � E1�TR

M0Rx,�1z.

Rx,� is the matrix describing a rotation of angle � around
the x axis, P(�) a precession of � around the z axis, E(t) �
diag(E2(t), E2(t), E1(t)), E1(t) � exp(�t/T1), E2(t) �
exp(�t/T2), M0 is the thermal equilibrium magnetization,
and 1z is the unit vector in the z direction. The simplified
notations E1 � E1(TR) and E2 � E2(TR) will also be used
in the following developments. Starting from some initial
magnetization M1

�, the recursive application of Eq. [2]
yields

M2
���
 � A�� � �1
M1

� � B

M3
���
 � A�� � �2
A�� � �1
M1

� � A�� � �2
B � B

M4
���
 � A�� � �3
A�� � �2
A�� � �1
M1

� � A��

� �3
A�� � �2
B � A�� � �3
B � B.

The linear evolution of �n (see Eq. [1]) allows us to write
the general expression

Mn
��� � �n�1
 � A��
A�� � �
A�� � 2�
. . . A�� � �n

� 2
�
M1
� � �I � A��
 � A��
A�� � �
 � A��
A�� � �
A��

� 2�
 � . . . � A��
A�� � �
A�� � 2�
. . . A�� � �n

� 3
�
�B. [3]

where I is the unit 3 � 3 matrix. Since E2 � E1 it holds that

	 �, M : �A��
A�� � �
A�� � 2�
. . . A�� � n�
M�

� E1
n�1�M�,

hence, the first term in the right-hand side of Eq. [3] con-
verges uniformly to zero for n 3 � because E1 � 1. Also,
since

�
n�0

�

E1
n �

1
1 � E1

,

the Weierstrass uniform convergence criterium for series
(comparison criterium) (22) implies that

lim
n3�

Mn
��� � �n�1
 � Mpss��
 [4]

with

Mpss��
 � �I � A��
 � A��
A�� � �


� A��
A�� � �
A�� � 2�
 � . . .�B [5]

where the series at the right-hand side converges uni-
formly with respect to � � [0, 2�]. Equation [4] demon-
strates the remarkable property that, although the magne-
tization vector does not reach a steady state for each �
value separately (basically because the sequence is not
periodical), at large n the magnetization profile Mn

�(� )
becomes independent of n apart from a variable shift
�n�1. Note that this limit, termed “pseudo-steady state” in
the remainder of this article, is independent of the initial
magnetization state M1

�. It is easily verified from Eq. [5]
that the function Mpss(�) satisfies

Mpss��
 � A��
Mpss�� � �
 � B, [6]

which is also found by searching a solution of Eq. [2] of the
form

Mn
���
 � Mpss�� � �n�1
. [7]

or by replacing � by � � �n in Eq. [2] and passing to the limit
for n 3 �. Interestingly, the uniform convergence of the
sequence Mn

�(� � �n�1) (see Eq. [4]), the equation (Eq. [6])
defining the limit of this sequence, and the solution (Eq. [5])
of this equation, can be derived easily from general results of
functional analysis, as shown in Appendix B.

If � � 0 (no RF spoiling), Eqs. [4], [5], and [6] reduce to
the well-known result (23,24)

lim
n3�

Mn
���
 � �I � A��
��1B. [8]
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More generally, if � � (K/P)(2�), with K and P integer, it
holds that

Mpss��
 � �I � A��
A�� � �
. . . A�� � �P � 1
�
��1


 �I � A��
 � A��
A�� � �
 � . . .

� A��
A�� � �
. . . A�� � �P � 2
�
�B. [9]

This result can be obtained either through a direct factor-
ization of Eq. [5] or by substituting Mpss(� � �) � A(� �
�)Mpss(� � 2�) � B in the right-hand side of Eq. [6],
substituting Mpss(� � 2�) � A(� � 2�)Mpss(� � 3�) � B in
the resulting equation, and so forth, and using the relation
A(� � P�) � A(�). In this case the sequence is actually
periodical, with a period of P � TR; hence, the same result
can be obtained by expressing the condition that the mag-
netization vector found after the n-th RF pulse is equal to
the magnetization found after the (n � P)-th pulse (see
Refs. (25–27) for similar calculations). Although Eq. [9]
provides an analytical expression of Mpss(�) for specific
values of �, it should be noted that the number of opera-
tions required to evaluate this formula grows rapidly with
the periodicity P, leading to increasingly complex results.
If �/(2�) is irrational, that is, cannot be written as the ratio
of two integer numbers, the sequence is not periodical and
the properties used to obtain Eq. [9] are not applicable.
Therefore, the task of finding an analytical expression of
Mpss(�) for an arbitrary value of � appears to be quite
difficult, and might even be impossible. Of course, any
irrational number can be seen as the limit of a sequence of
rational numbers K/P with increasing P, but for P 3 � Eq.
[9] leads back to the series expansion (Eq. [5]).

Existence of a Steady-State Signal Intensity: Integration
Method

Until now we have studied the evolution of an isolated
isochromat, that is, we have considered a fixed � value.
This is sufficient to describe signal formation in sequences
with fully-balanced gradients per repetition interval (usu-
ally called TrueFISP, balanced-FFE, FIESTA, or balanced
SSFP), since the good field homogeneity and short repeti-
tion times available nowadays on clinical scanners make it
reasonable to consider that all spins in a voxel experience
the same precession angle per TR. However, in RF-spoiled
sequences, the varying precession angle �n prevents the
magnetization vector from reaching a steady state for each
isochromat separately (see Eqs. [4] and [7]); hence, the
combination of RF spoiling with fully refocused gradients
would generate strong signal variations from repetition to
repetition, leading to image artifacts. Therefore, as stated
above, the net gradient area per repetition interval needs to
be large enough to ensure that the signal from a voxel
results from the superposition of a wide range of � values.
Under this condition, and provided that the detector phase
is set to k�n�1 (see sequence description above), the signal
collected after the n-th pulse is given by the following
integral over precession angles:

Sk,n � e�ik�n�1 �� E2�TE
ei��k�g�	
TE
MT,n
� ��g

� 	
TR
h��g, 	

 d�gd	
 [10]

where the complex notation MT � Mx � iMy is used for
transverse magnetization and h(�g, 	
) is the joint distri-
bution function of �g and 	
 within a voxel. The factor
E2(TE)exp(i(�k�g � 	
TE)) describes the relaxation and
precession occurring between excitation and readout. Un-
der the assumption that �g and 	
 are independent, �g

being uniformly distributed between 0 and 2�, and 	

following a lorentzian distribution (mean 	
0, full width at
half maximum 2/T�2) (13), the change of variable � � �g �
	
TR leads to

Sk,n � E2�TE
ei�TE�kTR
	
0��TE�kTR�/T�2e�ik�n�1�e�ik�MT,n
� ��
�, [11]

where

�f��
� �
1

2� �
0

2�

f��
d�.

By operating the change of variable �� � � � �n�1,
passing to the limit for n 3 �, permuting limit and inte-
gral (this is allowed in the case of uniform convergence
(22)), and using Eq. [4], one finally obtains

Sk,ss � lim
n3�

Sk,n � E2�TE
ei�TE�kTR
	
0��TE�kTR�/T�2�e�ik�MT,pss��
�.

[12]

This shows that, with a large uncompensated gradient area
per TR and the detector phase set to k�n�1, the collected
signal converges to a steady state value given by the prod-
uct of 3 factors, the second one accounting for permanent
off-resonance effects over the effective echo time kTR �
TE, and the third one being the k-th Fourier coefficient of
MT,pss(�). For FLASH imaging (k � 0) this means that,
without detector phase modulation, the MR signal con-
verges towards a constant value given by the product of the
DC component of Mpss(�) with a factor describing T*2 de-
cay (T*2

�1 � T2
�1 � T�2

�1) and dephasing over the time to
echo TE. Note that, due to the equivalence demonstrated
in Appendix A, the same result holds for FLASH se-
quences with quadratic pulse phase variation, provided
that the detector phase is equal to the phase of the last RF
pulse.

On the basis of Eqs. [12] and [5], it is possible to derive
(see proof in Appendix C) the property that, if 	
0 � 0,

Sk,ss���
 � �S*k,ss��
. [13]

This result means that signal in the y channel is a sym-
metric function of �, while the x component is antisym-
metric. As a consequence, the analysis of RF spoiled gra-
dient-echo sequences can be restricted to � values in the
interval [0, �], and at � � 0 the x component of Sk,ss is zero
for any value of k.

Since no general analytical expression has been found
for Mpss(�), the integral in Eq. [12] cannot be calculated
explicitly for arbitrary � values. If � � (K/P)(2�), with K
and P integer, the signal intensity can in principle be
obtained by integrating Eq. [9], for example, using sym-
bolic calculus software, but the resulting expressions are
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very cumbersome even for moderate values of K and P.
Note that the lack of analytical expression for the steady-
state signal intensity for irrational values of �/2� is more a
formal than a practical problem, since any digital phase
generator will be based on a finite number of control bits,
so the phase step will be a rational number.

Physical Decomposition of the Steady-State Signal:
Partition Method

In the previous section, the integration method has been used
to prove that a steady-state signal intensity is reached with
RF-spoiled sequences if the uncompensated gradient area is
large enough to induce a uniform distribution of precession
angles within each voxel and if the detector phase is properly
modulated. However, this approach has provided little intu-
ition about the basic mechanisms of signal formation. Here,
the partition method introduced initially by Kaiser and co-
workers (11) and further justified in Ref. (13) for the coherent
case, is extended to the case of linearly varying precession
angles, in order to interpret the steady-state signal as a sum of
gradient, spin, and stimulated echoes. The ultimate goal is to
quantify the different coherence pathways involved in signal
formation, in order to assess their degree of interference as
functions of the phase increment �. The analysis is restricted
to FLASH, PSIF, and ES-FFE sequences, and the effect of
permanent off-resonance effects is not considered, since this
problem is efficiently treated by means of the integration
method (see above).

As shown in Appendix D, when the pseudo-steady state
is established, that is, n 3 � (this will be tacitly assumed
in the remainder of this section), the transverse magneti-
zation after the n-th pulse can be written as

MT,n
� ��
 � Mx,n

� ��
 � iMy,n
� ��
 � �

��1

� �
�q1. . .q���q���1

�n,�q1. . .q����
.

[14]

In this expression, each term �n,{q1. . .q�}
(� ) can be viewed

as a part of MT,n
� (� ) that finds its origin in the homoge-

neous magnetization generated earlier by pulse number
n � � � 1, and has evolved during (� � 1) repetition
intervals under the effect of precession, relaxation, and
rotations due to RF pulses. The indices qj indicate whether
the magnetization component was longitudinal (qj � 0) or
transverse (qj � �1) during a particular repetition inter-
val, with a distinction between defocusing (qj � 1) and
refocusing (qj � �1) components. The sequence
{q1 . . . q��1} remembers thus the history of the compo-
nent from pulse (n � � � 1) to pulse n and q� gives the
status of the component during the n-th TR interval, that
is, between pulses n and n � 1. The first term �n,1(� ) is the
homogeneous part (or DC component) of the pseudo-
steady state transverse magnetization, that is, �MT,pss(�)�.
This quantity is equal to the homogeneous transverse mag-
netization just after any RF pulse in the pseudo-steady
state (see Eq. [7]) and will be noted �MT

�� in the following
equations. The higher order components (� � 1) are ob-
tained from this initial component by the iterative appli-
cation of Eqs. [44] to [49] (see Appendix D). Each pulse

splits any existing magnetization component into 1 longi-
tudinal component, 1 transverse dephasing component,
and 1 transverse refocusing component. This process can
be represented by a tree where each node gives rise to 3
branches (11,13). The tree of magnetization paths is
stopped when the dephasing index �� � ¥k�1

� qk van-
ishes, that is, at nodes that would give rise to fully refo-
cused components at the next level in the tree. This is a
consequence of the second term of Eq. [43] and can be
interpreted as the fact that all components originating from
these nodes are already taken into account, since the root
of the partition tree is the homogeneous transverse mag-
netization just after the RF pulse.

For a FID measurement (T1-FFE or FLASH, k � 0), no
dephasing occurs between excitation and readout; hence,
the signal is proportional to the single homogeneous term
in Eq. [14], which is the root of the partition tree:

SFLASH � E2�TE
�n,1��
 � E2�TE
�MT
��. [15]

Note that �MT
�� might be evaluated numerically by means

of the Fourier expansion method (see below) but is not
determined by the partition method at this stage.

In PSIF sequences (or CE-FAST or T2-FFE, k � �1), the
magnetization precesses by � between excitation and read-
out; thus, only the terms proportional to e�i� in Eq. [14]
(i.e., those satisfying �� � 0) give rise to coherent contri-
butions at the time of data sampling. The signal intensity is
therefore given by

SPSIF � E2�TE
ei����n�1
 �
��1

� �
���0

�n,�q1. . .q����
 [16]

where the factor ei�n�1 accounts for the detector phase mod-
ulation, and the dependence in � vanishes because of the
product of ei� with factors proportional to e�i� in the selected
components �n,{q1. . .q�}

(�). Since the net gradient area be-
tween the readout and the next RF pulse is zero, the path-
ways selected in a PSIF experiment are the same as those
contributing to the homogeneous magnetization just before
the RF pulse, which is thus proportional to the PSIF signal:

�MT
�� � E2ei����n
 �

��1

� �
���0

�n,�q1. . .q����
 � ei�E2�TR � TE
SPSIF.

[17]

As a consequence, the PSIF acquisition scheme is of little
interest for practical applications since the goal of RF
spoiling is to reduce as much as possible the residual
transverse magnetization at the end of the repetition inter-
val. However, the knowledge of �MT

�� is informative from
the point of view of sequence design since it reflects the
efficiency of RF spoiling and, as shown below, can be used
to evaluate the root of the partition tree �MT

��. Table 1 lists
the pathways satisfying �� � 0 (termed refocused path-
ways) of length � � 5, and the corresponding contributions
to the homogeneous magnetization before the (n � 1)-th
pulse. Note that all of them are independent of n, due to
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the linear variation of �n and the fact that �� � 0 is
possible only if the number of refocusing periods along the
pathway equals the number of defocusing periods. This
means that the PSIF signal and the homogeneous magne-
tization just before the RF pulse are stationary in the pseu-
do-steady state, in agreement with the results of the inte-
gration method, with Eq. [7], and with the relationship
between magnetization vectors before and after a RF pulse:
Mn

�(� ) � Rx,�Mn
�(� ). Table 1 illustrates also the property

that all terms in Eq. [17] are proportional to �MT
��*; hence,

Eq. [17] is actually a proportionality relationship between
�MT

�� and �MT
��*, the factor

C �
�MT

��

�MT
��*

� E2ei�
SPSIF

S*FLASH
[18]

being given by a series expansion, where each term is the
product of a real factor related to relaxation and RF pulses,
times a phase factor due to RF spoiling. As a consequence,
C is purely real in the coherent case (� � 0).

In the small flip angle limit, the summation over refocused
pathways appearing in the expressions of SPSIF (Eq. [16]) and
�MT

�� (Eq. [17]) can be further restricted to the second order
expansion in �, that is, to pathways of the form {(1)p(0)j(�1)p}
(p � 1, j � 0). Indeed, each direct transition from q� � �1 to
q��1 ��1 introduces a factor sin2(�/2) (see Eq. [46]), and any
indirect transition from q��j � �1 to q��1 � �1 with storage
as longitudinal magnetization in the mean time gives rise to
a factor (sin2�)/2 (see Eqs. [45] and [49]). Using the linear
evolution of �n, it follows that C can be approximated as
follows:

C � E2
2
�2

2 �ei�

2
� E1ei2� � E1

2ei3� � E1
3ei4� � . . .�

� E2
4
�2

2 �ei4�

2
� E1ei6� � E1

2ei8� � E1
3ei10� � . . .�

� E2
6
�2

2 �ei9�

2
� E1ei12� � E1

2ei15� � E1
3ei18� � . . .� � . . .

where the first row is the sum of all pathways of the form
{1(0)j � 1} ( p � 1, j � 0, 1, 2, 3 . . .), the second row
corresponds to pathways of the type {11(0)j � 1 � 1} ( p �
2, j � 0, 1, 2, 3 . . .), and so forth. By defining the function

H��
 �
1
2

� �
j�1

�

�E1ei�
j �
1
2

�1 � E1
2
 � 2i sin �

1 � 2E1cos � � E1
2 [19]

the small flip angle approximation of C can be rewritten as

C �
�2

2 �
p�1

�

E2
2peip2�H�p�
. [20]

FIG. 2. Real (absorption) and imaginary (dispersion) parts of the
function H(�) � (1 � exp(i� � TR/T1))�1 � 1/2 for T1/TR � 10, 20,
and 40.

Table 1
Refocused Pathways (
� � ¥j�1

� qj � 0) of Length � � 5 and
Corresponding Contributions to the Homogeneous Magnetization
Just Before the (n � 1)-th Pulse

Pathway:
Contribution to coherent magnetization before

(n � 1)-th pulse:

{q1 . . . q�} E2ei(���n)�n,{q1. . .q�}
(�)

{1-1} sin2(�/2)E2
2ei(�n��n�1)�MT

��*

{10-1} 1

2
sin2�E1E2

2ei(�n��n�2)�MT
��*

{11-1-1} cos4(�/2)sin2(�/2)E2
4ei(�n��n�1��n�2��n�3)�MT

��*

{100-1} 1

2
cos � sin2�E1

2E2
2ei(�n��n�3)�MT

��*

{110-1-1} 1

2
sin2� cos4(�/2)E1E2

4ei(�n��n�1��n�3��n�4)�MT
��*

{11-10-1} � 1

2
sin2� cos2(�/2)sin2(�/2)E1E2

4

� ei(�n��n�2��n�3��n�4)�MT
��*

{101-1-1} � 1

2
sin2�

sin2(�/2)cos2(�/2)E1E2
4ei(�n��n�1��n�2��n�4)

� �MT
��*

{1000-1} 1

2
cos2� sin2�E1

3E2
2ei(�n��n�4)�MT

��*

Pathways associated with second order terms in � are emphasized
in bold. All components are proportional to �MT

��*. They are also
independent of n, since �n is a linear function of n and the number
of positive phase terms equals the number of negative terms. PSIF
signal components during the n-th repetition interval can be ob-
tained by multiplying with E2(TE � TR)e�i�.
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As shown by Fig. 2, the shape of H(�) is that of a peak
centered at � � 0, with an absorption (real) and a disper-
sion (imaginary) part. For large values of T1/TR, the peak
height of the real part can be approximated by T1/TR and
its full width at half maximum by �2 � TR/T1. Note that
these characteristics can be explained easily on the basis of
the power series expansion in Eq. [19]: the value of H at
� � 0 results from the coherent addition of numerous
components with equal phases, giving rise to a maximum
intensity, while at � � 0 each term has a different phase,
leading to a reduced sum. If E1 � 1 (i.e., TR/T1 �� 1) and
� is not close to 0, numerous terms with approximately the
same intensity interfere destructively due to their phase
difference, while small E1 or � values cause the compo-
nent intensity to decrease significantly before a sufficient
phase spread has been achieved, leading to incomplete
cancellation. Knowing the shape of H(�), it is possible to
predict the structure of the graph of C versus � in the small
flip angle limit, using Eq. [20]. The first term, which is due
to the sum of refocused pathways of the form {1(0)j � 1}
( j � 0, 1, 2, 3 . . .), is proportional to H(�); hence, it gives
rise to peaks at � � 0 and � � 2�, as illustrated by Fig. 3a
(T1/TR � 20, T2 � T1, � � 10�). The second term,
related to pathways {11(0)j � 1 � 1} ( j � 0, 1, 2, 3 . . .),
is proportional to H(2�), leading to additional contribu-
tions to the peaks at � � 0 and 2�, as well as a new peak
at � � � (Fig. 3b). The contributions from the second term
are smaller than those due to the first term, because of the
factor E2

2p. Adding the third term ( p � 3) contributes to
the peaks at � � 0 and 2� and introduces new peaks at � �
1
3

(2�) and 2
3

(2�) (Fig. 3c). The fourth term contributes to
the peaks at � � 0, �, and 2�, and introduces new peaks at
� � 1

4
(2�) and � � 3

4
(2�) (Fig. 3d). As a general rule, the

p-th term, due to refocused pathways of the form
{(1)p(0)j(�1)p} ( j � 0, 1, 2, 3 . . .), consists of p equidis-
tant scaled replications of H(�) in the [0, 2�] interval.
Consequently, it involves contributions at � � (1/p)(2�),
(2/p)(2�), . . . , 2�, leading to new peaks for irreducible
fractions of 2� and adding to existing peaks otherwise. The
positions along the � axis of all peaks generated by the first
p terms are therefore given by the set of irreducible frac-
tions K/P satisfying 0 � K � P � p, which is known as the
p-th Farey sequence �p (28):

�1 � �0
1

,
1
1	

�2 � �0
1

,
1
2

,
1
1	

�3 � �0
1

,
1
3

,
1
2

,
2
3

,
1
1	

�4 � �0
1

,
1
4

,
1
3

,
1
2

,
2
3

,
3
4

,
1
1	

�5 � �0
1

,
1
5

,
1
4

,
1
3

,
2
5

,
1
2

,
3
5

,
2
3

,
3
4

,
4
5

,
1
1	

···

Interestingly, �p�1 can be obtained from �p by inserting
the mediant fraction (a � c)/(b � d) between the fractions
a/b and c/d in the original set if b � d � p � 1 (28). When
all terms in Eq. [20] are taken into account (see Fig. 3e),
peaks are found at all � values of the form (K/P)(2�), with
K and P integer. If K/P is irreducible, the dominant con-
tributions to the peak are due to terms p � P, p � 2P, p �

FIG. 3. (e) Small flip angle approximation of �C�, that is, E2 times the
ratio between PSIF and FLASH signal magnitudes, or equivalently
the ratio between absolute values of the coherent transverse mag-
netization at the end and the beginning of the repetition interval.
Parameter values are � � 10°, T1/TR � 20, T2 � T1, and � variable.
The values were obtained by truncating the sum in Eq. [20] to 500
terms. (a)–(d) Contributions of terms p � 1 to p � 4, that is, of
refocused pathways of the form {(1)p(0)j(�1)p} with p � 1 to 4. All
irreducible fractions K/P with the same P value give rise to peaks
with a similar height, which is a decreasing function of P.
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3P, and so forth. Assuming negligible contributions from
the tails of other peaks, the values of C at � � (K/P)(2�) is
given by

�2

2 �
j�1

�

E2
2jPH�0


which is real, independent of K, and decreasing with P.
For the parameter values of Fig. 3, the assumption of
non-overlapping peaks is acceptable, for example, at � �
1
5

(2�), 2
5

(2�), 3
5

(2�), and 4
5

(2�), since these peaks have
approximately the same amplitude, but does not hold in
the vicinity of large peaks, near � � 0, for example. Note
also that the graph of C versus � (Fig. 3e) is symmetric
about � � 180°, in accordance with Eq. [13]. In summary,
in the small flip angle limit, we have demonstrated that a
deviation from C � 0, that is, imperfect spoiling of the
coherent transverse magnetization just before RF pulses,
occurs at all � values of the form (K/P)(2�), with K and P
integer. Assuming that K/P is irreducible, this deviation
originates from the incomplete destructive interference
between pathways of the form {(1)P(0)j(�1)P},
{(1)2P(0)j(�1)2P}, {(1)3P(0)j(�1)3P}, . . . Since T2 relax-
ation attenuates transverse components (corresponding to
�1 and �1 indices) the amplitude of the deviation de-
creases with P.

As proposed initially by Kaiser and colleagues (11) in
the coherent case, the knowledge of the ratio �MT

��/�MT
�*�

(or, equivalently, the knowledge of SPSIF/S*FLASH) can be
used to evaluate �MT

��, that is, to find the initial condition
needed to completely determine the magnetization com-
ponents in the partition tree. This is achieved by express-
ing the effect of a RF pulse on homogeneous magnetization
components:

�MT
�� � cos2

�

2
�MT

�� � sin2
�

2
�MT

��* � i sin ��Mz
�� [21]

�Mz
�� �

sin �

2i
��MT

�� � �MT
��*
 � cos ��Mz

�� [22]

and the effect of T1 relaxation on the homogeneous longi-
tudinal magnetization:

�Mz
�� � E1�Mz

�� � �1 � E1
M0. [23]

By solving the set of Eqs. [18], [21], [22], and [23], one finds
�MT

��:

�My
�� � Im��MT

��


�
�sin ��1 � E1
M0

�1 � E1cos �
 � �cos � � E1
�Re(C) �
[Im(C)]2

1 � Re(C)�
[24]

�Mx
�� � Re��MT

��
 �
Im�C


1 � Re�C

�My

�� [25]

where Re and Im denote the real and imaginary parts of a
complex number, respectively. Equations [24] and [25]
generalize the expressions found in Ref. (11) (Eqs. [46] and
[47]) for coherent sequences (� � 0, no RF spoiling). In that
case, Im(C) � 0 (see above) and Re(�MT

��) � 0 (see Eq.
[25]), in accordance with the symmetry result obtained
above (Eq. [13]). In the limiting case of C � 0 (i.e., �MT

�� �
0, SPSIF � 0), termed ideal spoiling, the FLASH signal
reduces to the Ernst formula (1–3) found at TR �� T2. As
a consequence of the previous discussion, in the small flip
angle limit, the largest deviations from ideal spoiling occur
at � values of the form (K/P)(2�). At these � values, Re(C)
is large and Im(C) is close to zero; hence, the FLASH signal
is essentially imaginary and the sign of the deviation from
ideal spoiling is conditioned by the factor (cos � � E1)
appearing in the denominator of Eq. [24]. Flip angle values
below the Ernst angle (� � �E � arccos(E1)) yield nega-
tive deviations, � � �E gives rise to local maxima for the
signal intensity, and at � � �E � arccos(E1) (Ernst angle)
the y component of the FLASH signal is equal to the ideal
spoiling signal, independently of the value of �. These
theoretical predictions are in agreement with the observa-
tions made with numerical simulations and experiments
(4–6,8).

In echo-shifted sequences, the pathways leading to co-
herent magnetization at the time of echo are those propor-
tional to ei� (termed ES pathways). The signal intensity is
obtained by selecting these terms in Eq. [14] and multiply-
ing the result with E2(TE)e�i(���n�1) to account for trans-
verse relaxation, gradient-related precession during the
delay between excitation and readout, and detector phase
modulation:

SES–FFE � E2�TE
e�i����n�1
 �
��1

� �
���1�1,q��1

�n,�q1. . .q����
. [26]

Note that the dependence in � vanishes because of the
product of e�i� with the factor ei� appearing in all selected
components. The contributions due to ES pathways with �
� 1 to 5 are given in Table 2. Due to the linear evolution of
�n and the equal number of negative and positive contri-
butions to the RF spoiling-related phase, all contributions
are independent of n; hence, the ES-FFE signal is station-
ary in the pseudo-steady state, in agreement with the re-
sults of the integration method. Note also that all terms
contain the factor �MT

��; hence, Eq. [26] is a proportionality
relationship between SES–FFE and �MT

�� (or equivalently
SFLASH). In the small flip angle approximation (second
order expansion in �) only the primary ES pathway {11}
and the “dominant” secondary ES pathways {1(0)j1} ( j �
1, 2, 3, . . .) (13) are retained in the summation since all
other ES pathways involve at least 2 transitions from refo-
cusing to defocusing transverse magnetization, or vice
versa. The ratio of ES-FFE and FLASH signals can then be
approximated as follows:

SES–FFE/SFLASH � E2


 �cos2
�

2
�

�2

2
(E1e�i� � E1

2e�2i� � E1
3e�3i� � . . .)� [27]
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� E2��1 �
�2

4 � �
�2

2 �H(��) �
1
2��. [28]

At � � 0 (coherent ES-FFE sequences) the term (��2/
2)(H(0) � 1/ 2), which is due to the coherent addition of
pathways of the type {1(0)j1} ( j � 1, 2, 3, . . .), tends to
reduce the ratio SES–FFE/SFLASH, leading to a net value
smaller than E2cos(�2/2), that is, the value that would be
expected if only the primary ES pathway contributed (13).
When RF spoiling is applied, H(��) decays rapidly with �
because of the different phases acquired by secondary ES
pathways. Therefore the destructive interference between
primary and secondary ES pathways disappears and, far
from � � 0, the ratio SES–FFE/SFLASH is even larger than
E2cos2(�/2).

NUMERICAL SIMULATIONS

In this section we assess the accuracy of the partition
method in the small flip angle regime by comparing it with
“exact” signal intensities. The calculation of these values
is not trivial since no general analytical expressions have
been obtained so far. In principle it would be possible to
evaluate Mpss(�) for a large number of � values by truncat-
ing the series expansion in Eq. [5], and to obtain the signal
intensity by averaging over � values (see Eq. [12]). How-
ever, the errors introduced by approximating the series
and the integral with finite sums would not be easily
assessed. Another approach would be to evaluate the se-
ries resulting from the partition method, without restrict-
ing the summation to second order terms. In practice, this
approach is also not feasible since the number of compo-
nents to be evaluated grows exponentially with the num-
ber of pulses applied, leading to prohibitive computing

times, especially when TR �� T1 (11). The solution that
has been adopted most often (5–8) consists of evaluating
the recurrence in Eq. [2] for a “large” number of � values
and averaging the resulting magnetization vectors to ob-
tain the transient signal intensities as given by Eq. [11].
After a sufficient number of TR intervals, a good approx-
imation of the steady-state signal is obtained. This ap-
proach is conceptually simple because it closely mimics
the physical mechanism of signal formation, but in prac-
tice it can be time consuming since the magnetization
vector evolution needs to be calculated many times and
the minimum number of isochromats required to achieve a
given precision is not easily determined. As shown in
Refs. (9,14) and chapter 8 of Ref. (2), an elegant solution to
these problems consists of translating the recurrence for
Mn

�(� ) into a recurrence for the Fourier coefficients of this
function, which are directly proportional to signal inten-
sities. Here this approach is adapted to the case of linearly
varying precession angles, and an estimate of the mini-
mum number of pulses required to reach steady-state with
a given accuracy is provided. The method is then applied
to RF-spoiled FLASH, PSIF, and ES-FFE, and the results
are compared to those obtained by means of the partition
method in the small flip angle approximation.

Computational Algorithm for Transient and Steady-State
Signals: Fourier Expansion Method

Since Mn
�(� ) is a periodic function of �, its transverse and

longitudinal parts can be written as two Fourier series

MT,n
� ��
 � �

k

Fk,nM0eik� [29]

Mz,n
� ��
 � �

k

Gk,nM0eik� [30]

where G�k,n � G*k,n since Mz,n
� (� ) is real. By expressing

Eq. [2] in the coordinate system (MT, M*T, Mz), with MT �
Mx � iMy (2) one obtains the following recurrence for the
Fourier coefficients:

Fk,n�1 � E2cos2
�

2
ei�nFk�1,n � E2sin2

�

2
e�i�nF*�k�1,n

� iE1sin �Gk,n � i sin ��1 � E1
 	k,0 [31]

Gk,n�1 � �
i
2

E2sin �ei�nFk�1,n �
i
2

E2sin �e�i�nF*�k�1,n

� E1cos �Gk,n � cos ��1 � E1
 	k,0 [32]

where 	i, j � 1 when i � j and 0 otherwise (Kronecker’s
delta). If the spin system is at equilibrium when the se-
quence is started, the magnetization state after the first RF
pulse is given by M1

� � Rx,�M01z, that is,

Fk,1 � �i sin � 	k,0 [33]

Gk,1 � cos � 	k,0. [34]

Table 2
Echo-Shifted Pathways (
��1 � ¥j�1

��1 qj � 1, q� � 1) of Length �
� 5 and Corresponding Contributions to the Steady-State Signal
in Spoiled ES-FFE Sequences

Pathway: Contribution to ES-FFE signal after n-th pulse:

{q1 . . . q�} E2(TE)ei(����n�1)�n1
{q1. . .q�}(�)

{11} cos2(�/2)E2(TR � TE)�MT
��

{101} � 1

2
sin2�E1E2(TR � TE)ei(��n�1��n�2)�MT

��

{11-11} cos2(�/2)sin4(�/2)E2(3TR � TE)
� ei(��n�1��n�1��n�2��n�3)�MT

��

{1001} � 1

2
cos � sin2�E1

2E2(TR � TE)ei(��n�1��n�3)�MT
��

{110-11} 1

2
sin2� cos2(�/2)sin2(�/2)E1E2(3TR � TE)
� ei(��n�1��n�1��n�3��n�4)�MT

��

{11-101} 1

2
sin2� cos2(�/2)sin2(�/2)E1E2(3TR � TE)
� ei(��n�1��n�2��n�3��n�4)�MT

��

{101-11} � 1

2
sin2� sin4(�/2)E1E2(3TR � TE)

ei(��n�1��n�1��n�2��n�4)�MT
��

{10001} � 1

2
cos2� sin2�E1

3E2(TR � TE)ei(��n�1��n�4)�MT
��

Pathways associated with second order terms in � are emphasized
in bold. All components are proportional to �MT

��. They are also
independent of n, since �n is a linear function of n and the number
of positive phase terms equals the number of negative terms.
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Every new RF pulse in the train fills 2 additional coher-
ence levels; hence, after the n-th pulse, non-zero coeffi-
cients are found for �n � 1 � k � n � 1.

According to Eq. [11] the signal measured during the
n-th interpulse interval is directly proportional to the k-th
Fourier coefficients of MT,n

� (� ):

Sk,n/M0 � E2�TE
ei�TE�kTR
	
0��TE�kTR�/T�2e�ik�n�1Fk,n

and an approximation of the steady-state signal intensity
Sk,ss can be obtained by the recursive application of Eqs.
[31] and [32] until sufficient convergence has been
reached. As shown in Appendix E, the minimum number
of TR intervals required to achieve a precision of  � M0 is
given by

n � ��ln� /2
 � TE/T2
T1/TR � 1 [35]

independently of the initial magnetization state.

Results

Figure 4 shows the “exact” values of �C�, that is, the ratio
of PSIF and FLASH modulus signals (see Eq. [18]), as
functions of the phase increment �. These values have
been obtained using the Fourier expansion method (Eqs.
[31] and [32]) with the following parameters: T1/TR � 20,
T2 � T1, � � 10�, 18� (Ernst angle), 30°, and 200 RF
pulses in order to ensure that the residual error is less than
0.0001M0 (see Eq. [35]). No off-resonance effects were
taken into account, but this does not restrict the generality.
Note that, according to Eq. [13], the values of C between �
and 2� can be obtained by symmetry. At � � 10° the
results are in good qualitative agreement with the peak
structure derived from the partition method in the small
flip angle regime. Indeed, high amplitudes (i.e., deviations
from ideal spoiling) are found at all � values of the form
(K/P)(2�), and the peak height is approximately indepen-
dent of K and decreases with P, provided that K/P is
irreducible. For example, peaks of decreasing amplitude
can be observed at � � 0 (or 2�), 1

2
(2�), 1

3
(2�), . . . , 1

7
(2�),

and so forth. Also, peaks of equal amplitudes occur at � �
1
5

(2�), and 2
5
(2�), as well as � � 1

7
(2�), 2

7
(2�) and 3

7
(2�).

However, comparison of Figs. 3e and 4a shows that, even
at � � 10°, the small flip angle approximation tends to
overestimate �C�. Additional simulations (results not
shown) have demonstrated an improving quantitative
agreement when the flip angle is decreased (e.g., less than
5% error at � � �/2 when � � 1°). At larger � values, the
peaks are broadened and the regular structure found in the
small flip angle regime is less apparent. The peak heights
increase from � � 10° to � � 30°, but the quadratic depen-
dence found in the small flip angle regime (see Eq. [20])
does not hold for these � values.

Figure 5 gives the modulus of the FLASH signal normal-
ized to M0, computed by means of the Fourier expansion
method with the same parameters as above, and TE � 0. In
agreement with the results of the partition method (see Eq.
[24]), as well as previous numerical simulations and in
vitro experiments (4–6,8), the same peak structure is
found in the graph of SFLASH as in the graph of C versus �,
with peaks oriented upwards at � � �E and downwards at

� � �E. At � � 10°, � values far from the most intense
peaks (i.e., far from � values of the form (K/P)2�, with P
small) give rise to signal intensities close to that calculated

FIG. 4. “Exact” values of �C�, that is, E2 times the ratio between PSIF
and FLASH signal magnitudes, or equivalently the ratio between
absolute values of the coherent transverse magnetization at the end
and the beginning of the repetition interval. Parameter values are � �
10° (a), 18° (b) (Ernst angle), and 30° (c); T1/TR � 20; T2 � T1; and �
variable. The results are obtained by means of the Fourier expansion
method with 200 repetition intervals, corresponding to a residual error
smaller than 0.0001M0 for all magnetization components.
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under the hypothesis of ideal spoiling. This is in agree-
ment with C values close to 0 at these positions along the
� axis. At � � 30°, the small flip angle approximation is
not really valid and C remains significantly different from
0 even far from the largest peaks; consequently, the “base-
line” signal is not equal to the ideal spoiling value. At � �
�E (i.e., 18° in this example) the imaginary part of the
complex signal (i.e., the signal in the y channel) is exactly
equal to the ideally spoiled signal (see Eq. [24]), but the
signal modulus deviates slightly from ideal spoiling due to
non-zero values of the imaginary part of C. In the small flip
angle limit, these can be attributed to the dispersion part of
the peaks contributing to C (see Eq. [20] and Fig. 2).

Finally, Fig. 6 shows the ratio between echo-shifted and
FLASH steady-state signal intensities, as calculated by the
Fourier expansion method (solid line). At � � 0 the ratio is
lower than E2cos2(�), that is, the value that would be
expected if only the primary ES pathway {1,1} contributed
to the signal (dotted line). According to the results of the
partition method (see above) and to Ref. (13), in the small
flip angle regime this signal loss is mainly caused by the
destructive interference between the primary ES pathway
and secondary ES pathways of the form {1(0)j1}, that is,
the second order terms in �. When � increases, these
pathways acquire different phases and cancel each other;
hence, the ratio �SES–FFE/SFLASH� increases. At � � 10° this
signal recovery is well described by the small flip angle
formula (Eq. [28]) (dashed-dotted line): qualitative agree-
ment with the results of the Fourier expansion method for
� below 20° and quantitative agreement above 20°. For
higher flip angle values, the signal recovery with increas-
ing � does still hold but is not accurately described by Eq.
[28]. For all � values, the ratio between ES-FFE and
FLASH signals is higher than E2cos2(�/2) when � ap-
proaches 180°.

EXPERIMENTS

Methods

All experiments were performed using a 1.5 T Philips
Gyroscan Intera scanner (Best, The Netherlands) equipped
with the quadrature head coil. A 1.5 l cylindrical bottle
filled either with an MnCl2 solution (T1 � 800 ms and
T2 � 100 ms, similar to gray matter at 1.5 T) or with tap
water (T1 � 2860 ms and T2 � 2050 ms, similar to CSF
at 1.5 T) was placed parallel to the main magnetic field.
The imaging volume was positioned at the center of the
bottle, that is, in a region where field homogeneity was
such that T2 � T*2 in good approximation.

3D RF-spoiled gradient-echo sequences were imple-
mented with FLASH (k � 0), PSIF (k � �1), and ES-FFE
(k � 1) acquisition schemes. TR and TE were 25 ms and
9 ms, respectively. The acquisition matrix was 80 � 40 �
17 with a resolution of 3.5 mm � 3.5 mm � 5 mm (fre-
quency encoding � phase encoding � second phase en-
coding and slab selection direction, parallel to the main
field), resulting in an acquisition time of 17 s for the full
volume. The slab thickness (as determined by the RF pulse
bandwidth and selection gradient) was 42.5 mm, that is,
1/2 of the encoded FOV in the second phase encoding
direction, in order to avoid aliasing due to slab profile

FIG. 5. Solid line: modulus of the steady-state signal intensity nor-
malized to M0, as a function of the phase increment �, for a FLASH
sequence (k � 0) with T1/TR � 20; T2 � T1; � � 10° (a), 18° (b) (Ernst
angle), and 30° (c); TE � 0; no permanent off-resonance effects. The
results are obtained by means of the Fourier expansion method with
200 repetition intervals, corresponding to a residual error smaller
than 0.0001M0 for the magnetization components. Dotted line: ide-
ally spoiled signal intensity (Ernst formula (1–3)). Peaks occur at � �
(K/P)2�, with K and P integer. The peak values are local maxima at
� � �E and local minima at � � �E. The deviations from ideal
spoiling are smallest at � � �E.
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imperfections. The bandwidth per pixel was 85 Hz. Two
dummy scans were performed before recording data, in
order to reach the steady-state signal intensity. In all ac-
quisition schemes (FLASH, PSIF, and ES-FFE) the net
gradient area per TR was such that a phase spread of 4�
per TR occurred in all directions across each voxel. The
flip angle was set successively to 5, 15, 25, 40, 60, and 80°
and the phase increment � to 0, 72° (� 1

5
(2�)) and 117°

(i.e., one of the most commonly chosen values (6)).
For both phantoms, all sequences, all flip angles, and all

� values, the signal intensity was computed as the average
of the modulus image in a region of interest located in the
central slice, where the nominal flip angle was effectively
obtained. The PSIF and ES-FFE signal intensities were
normalized to FLASH and compared to simulations using
the Fourier expansion method (no permanent off-reso-
nance effects) with 318 pulses for the first phantom and
1134 pulses for the second one, in order to reduce the
residual error to less than 0.0001M0.

Results

Solid lines and stars in Fig. 7 correspond to measured and
simulated ratios of PSIF versus FLASH signal intensities.
Plots a and d illustrate the constructive interference be-
tween refocused pathways in coherent GE sequences (� �
0), giving rise to the PSIF signal or, equivalently, coherent
transverse magnetization at the end of the repetition inter-
val. This effect increases with � (C ! �2 in the small flip
angle approximation) and is most intense at long T2 since
the magnetization remains transverse for at least 2 TR
intervals along all refocused pathways. Plots b and c dem-
onstrate a significant reduction of the measured ratio
SPSIF/SFLASH by RF spoiling, in good agreement with the
numerical simulations. Although 72° � 1

5
(2�) coincides

with the position of a peak (see the results of numerical
simulations for the ratio C), and should therefore lead to
less effective spoiling, the attenuation is not stronger at
� � 117° than at � � 72°. This is due to the relatively short
T2 value (T2/TR � 4), leading to a weak peak amplitude
since all contributions have spent at least 10 TR intervals
in the transverse state. With longer T2 values (left column,
plots e and f), the theory predicts a better suppression of
coherent transverse magnetization at the end of the repe-
tition interval for � � 117° than for � � 72°, at small flip
angle. However, the experimental data do not fully con-
firm this behavior, most probably because of the extreme
sensitivity of signal intensities to any imperfection in the
actual implementation of a given phase increment � at
high T1/TR (see our discussion of the shape of H(�) or Fig.
7 in Ref. (6)). Note that, despite the poor quantitative
agreement with numerical simulations, the PSIF signal
reduction by RF spoiling is in good qualitative agreement
with the expectations for both values of �. The ratios of
ES-FFE versus FLASH signals are depicted in Fig. 7 by
dashed lines (simulations) and crosses (experiment). At
� � 0 (a and d), the destructive interference between
primary and secondary ES pathways (13) is noticeable,
particularly when � increases, leading to ratios smaller
than the quantity E2cos2(�/2), which would be obtained if
only the primary ES pathway contributed. The signal re-
covery due to the loss of coherence of secondary ES path-

FIG. 6. Solid line: steady-state signal intensity for a spoiled echo-
shifted sequence (k � 1) with T1/TR � 20; T2 � T1; T�2 � �; �
variable; and � � 10°, 18° (Ernst angle, cos �E � E1), and 30°;
normalized to the signal intensity in the FLASH sequence with
identical parameters. The results are obtained by means of the
Fourier expansion method with 200 repetition intervals, correspond-
ing to a residual error smaller than 0.0001M0 for the magnetization
components. Dashed-dotted line: ratio found in the small flip angle
approximation, that is, E2(TE)�1 � (�2/2)H*(�)� (Eqs. [28] and [15]).
Dotted line: ratio found by assuming that only the primary ES
pathway contributes to the echo-shifted signal intensity, that is,
E2cos2(�/2).
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ways with RF spoiling is observed in plots b, c, e, and f,
with again a better agreement between theory and experi-
ment at shorter relaxation times. Generally speaking, the
agreement between simulations and experiment tends to
be poorer at high flip angle values, because all signal
intensities are low and the computed ratios are sensitive to
noise.

DISCUSSION AND CONCLUSIONS

In the first part of this article we have proposed a new
demonstration of the property that RF-spoiled sequences,
although non-periodical by nature, can be designed in
such a way that the received signal reaches a stationary
state. A key element of the proof was to simplify the

FIG. 7. Comparison of experimental measurements and numerical simulations of the ratios �SPSIF/SFLASH� (stars, solid lines) and �SES–FFE/
SFLASH� (crosses, dashed lines) in an MnCl2 solution (left) and tap water (right) at TR � 25 ms, TE � 9 ms, � � 0 (top row), 72° (middle row),
and 117° (bottom row). Numerical simulations were based on the Fourier expansion method. The former ratio illustrates the attenuation of
coherent transverse magnetization at the end of the interval in RF-spoiled sequences (� � 72°, 117°) as compared to coherent sequences
(� � 0), while the latter demonstrates the suppression of destructive interferences between primary and secondary ES pathways by RF
spoiling in echo-shifted sequences. The agreement between simulations and experiment is excellent for the MnCl2 solution (T1/TR � 32,
T2/TR � 4) but only modest for tap water (T1/TR � 114, T2/TR � 82), most probably because of the extremely steep variation of signal
intensities as a function of � for such long relaxation times. The dotted line is the ratio between ES-FFE and FLASH signal that would be
expected if only the primary ES pathway contributed to the ES-FFE signal, that is, E2cos2(�/2).
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problem by formulating it in terms of linearly increasing
precession angles instead of quadratically varying pulse
phases. Another important step consisted of realizing that,
while the evolution of each isochromat can be studied
independently with purely algebraic methods in the co-
herent case, for RF-spoiled sequences it is necessary to
think in terms of functions of the precession angle �. By
doing this, it was possible to show that the system con-
verges towards a pseudo-steady state where, apart from a
variable shift along the � axis, the magnetization profile
Mn

�(� ) is stationary. Starting from this fundamental prop-
erty, an integration over precession angles enabled us to
prove that, if the net gradient surface per repetition inter-
val is large and the detector phase set to k�n�1, a steady-
state signal is reached. It should be noted that the work of
Sobol and Gauntt (10) already established the existence of
steady-state signals for all possible coherence orders (i.e.,
FLASH, FISP, and ES-FFE sequences, or any higher order
acquisition scheme) and could in principle also be used to
derive analytical solutions for all values of the phase in-
crement of the form (K/P)(2�) (although the resulting
expressions become very cumbersome as P increases).
However, the integration method adopted here presented a
number of advantages. First of all, the mathematical treat-
ment was simpler, thereby allowing us to view the exis-
tence of a pseudo-steady state in RF-spoiled sequences as
a direct application of general functional analysis results
(see Appendix B). Also, this technique did not directly
deal with signal intensities, but described the evolution of
local magnetization vectors which were subsequently in-
tegrated to obtain the signal intensity from a whole voxel.
This 2-step process had the advantage of being closer to
the physical mechanism of signal formation, and allowed
magnetic field inhomogeneities (or other permanent off-
resonance effects) to be naturally incorporated as an addi-
tional variable in the precession angle distribution. An-
other fact suggested previously (6) and rigorously demon-
strated here was the need for a large net gradient area per
repetition interval, which actually resulted from the non-
convergence of the magnetization vector for isolated iso-
chromats. Also clarified was the detector phase modula-
tion schemes required to eliminate signal phase variations,
which would otherwise corrupt the phase encoding pro-
cess. In the particular case of RF-spoiled echo-shifted se-
quences, this provided a mathematical justification of the
heuristic argument that, in the quadratic pulse phase im-
plementation, the n-th readout should be in-phase with
the (n � 1)-th pulse (12,16). Other benefits of the integra-
tion method were the demonstration of the symmetry with
respect to � � 0 (see Eq. [13] and Appendix C) and the
upper bound for the difference between the current and
steady-state signal intensities (see Eq. [35] and Appendix
E), which is important to assess the precision of numerical
estimates of the steady-state signal and to make predic-
tions about the properties of transient-state imaging tech-
niques. The two latter results were, to the authors’ knowl-
edge, never proved before. Finally, it should be empha-
sized that the derivation of the pseudo-steady state
magnetization served also as a basis for the formal devel-
opment of the partition method (see Appendix D). A lim-
itation of our approach is the fact that the linear precession
angle variation (or equivalently the quadratic pulse phase

variation) was assumed from the beginning of the analysis,
while Sobol and Gauntt (10) made no prior hypothesis
about the type of variation of the RF pulse phase and
showed that only the quadratic pattern leads to a steady-
state signal.

A second important goal of this article was to gain more
physical intuition about signal formation in RF-spoiled
sequences by decomposing the steady-state signal into a
sum of gradient, spin, and stimulated echoes, as proposed
initially by Kaiser and coworkers (11). The idea of quali-
tatively representing the steady-state signal in gradient
echo sequences as a superposition of echoes originating
from previous pulses was already suggested in Ref. (29)
and was used as a semi-quantitative justification of the
linearly increasing precession angle in RF-spoiled se-
quences (3,6). However, the insight gained by these anal-
yses remained limited by the lack of theoretical under-
standing of the decomposition method itself. Actually, the
original article of Kaiser and colleagues (11) addressed
only the coherent case (� � 0, no RF spoiling) and was
“based on physical arguments rather than on a mathemat-
ical expansion.” A complete mathematical justification of
the method was proposed in Ref. (13) for the coherent case
and has been extended here to the problem of RF-spoiled
sequences formulated in terms of linearly increasing flip
angles. The derivation started with a series expansion (see
Eq. [14] and Appendix D) of the pseudo-steady state mag-
netization defined in the first part of the article, in which
each term could be interpreted as a component originating
from a previous RF pulse. The signal intensity of FLASH,
PSIF, and echo-shifted sequences was then obtained by
selecting the appropriate components in the sum. Finally,
the root of the partition tree, that is, the homogeneous
transverse magnetization just after each RF pulse, was
derived from the sum of refocused pathways (or, equiva-
lently, those contributing to the PSIF signal), using the
relationships between homogeneous magnetization com-
ponents just before and just after each RF pulse. Note that
the latter step was already described in the original paper
of Kaiser and coworkers (11) but was omitted in Ref. (13)
since, in the coherent case, the integration method pro-
vides an analytical result for the homogeneous transverse
magnetization just after the RF pulse (or, equivalently, the
N-FFE signal) (13,30). By further restricting the summation
to second order terms in �, that is, assuming that the flip
angle is small, this approach yielded a physical interpre-
tation of the peaks observed by several authors in the
graph of FLASH signal versus precession angle increment
(�), both with numerical simulations and in vitro experi-
ments (4–6,8). We found that the peak observed at � �
(K/P)(2�) (with K and P integer, and K/P irreducible) was
due to the incomplete destructive interference of several
families of refocused pathways, namely {(1)P(0)j(�1)P},
{(1)2P(0)j(�1)2P}, {(1)3P(0)j(�1)3P}, . . . ( j � 0, 1, 2,
3, . . .), leading to non-zero values of the ratio C of PSIF
and FLASH signal intensities. Through the relationships
(Eqs. [24] and [25]) between this ratio and the FLASH
signal, we were able to predict that these high C values
yield positive or negative deviations from ideal spoiling in
the FLASH signal, according to whether � is above or
below the Ernst angle. Note that the semi-quantitative
analysis of Duyn (8) provided another interpretation of the
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position and intensity of the peaks, based on Fourier anal-
ysis and an analogy with BURST sequences. However, this
approach predicted only positive peaks of height propor-
tional to 1/�P and cannot account for negative deviations
from ideal spoiling. The application of the partition
method in the small flip angle regime to RF-spoiled ES-
FFE sequences revealed that the destructive interference
between primary and secondary ES pathways observed in
coherent ES-FFE sequences (13) is suppressed for all val-
ues of � apart from the vicinity of � � 0. This does not,
however, always imply that the ES-FFE signal intensity
grows since the increase of SES–FFE/SFLASH is generally
accompanied by a decrease of SFLASH. Note also that the
actual signal intensity in RF-spoiled ES-FFE sequences
will generally be higher than the value

M0�1 � E1
sin �

1 � E1cos �
E2�TR � TE
cos2

�

2

assumed by Chung (12). Indeed, even if � is chosen to be
“far” from all large peaks, such that the first factor is a good
estimate of the transverse magnetization just after the
pulse, the factor cos2(�/2) underestimates the resultant of
all echo-shifted pathways.

The predictions of the partition method in the small flip
angle limit have been compared to numerical simulations
based on a Fourier expansion of the magnetization as a
function of the precession angle �. This algorithm is par-
ticularly efficient since it provides the exact signal inten-
sities for all coherence orders (i.e., for FLASH, echo-
shifted sequences, etc.) during the transient phase, and
approximate values of the steady-state signals with good
control over the precision of these estimates. Note also
that, although meant to be used for numerical simulations,
the formulas given here in the context of the Fourier ex-
pansion method are actually very similar to those used in
Ref. (10) as a starting point for analytical developments.
The small flip angle approximation of the ratio C was
found to be in good qualitative agreement with numerical
estimates, although the height and sharpness of the peaks
tend to be overestimated, especially for flip angles close to
or above the Ernst angle. This mismatch might be due to
higher order components (�4 or higher), which are small
but numerous. The numerical simulations confirmed also
the theoretical predictions that the sign of � � �E deter-
mines the peak orientation for FLASH signal intensities,
and that the ratio of echo-shifted and FLASH signals in-
creases with �.

The theoretical findings have been confirmed by in vitro
measurements, with a better agreement between simula-
tions and experiments for shorter relaxation times, proba-
bly because the sensitivity to small changes in � is much
higher for long T1 and T2. For in vivo conditions, it is
expected that effects such as flow and diffusion will im-
pact RF-spoiled signal. These could be accounted for by
introducing flow-related precession angles in the Bloch
equations (8). Other extensions of the present work could
study the implications of the partition method for higher
coherence orders (�k� � 1).
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APPENDIX A: EQUIVALENCE BETWEEN QUADRATIC
PULSE PHASE AND LINEAR PRECESSION ANGLE
VARIATIONS

Assuming a variable pulse phase "n and a constant pre-
cession angle � per TR, the Bloch equations yield the
following recurrence for the magnetization states just after
RF pulses:

Mn�1
� ��
 � P�"n�1
Rx,�P��"n�1
�E�TR
P��
Mn

���


� �1 � E1�TR

M01z [36]

with the same notations as in the main text. In a frame of
reference that matches the phase of the latest RF pulse,
that is, which is rotated by "n around the z axis with
respect to the static frame ( x, y, z), the observed magne-
tization vector is

M̃n
���
 � P��"n
Mn

���
. [37]

The recurrence for M̃n
�(� ) is

M̃n�1
� ��
 � A�� � #"n
M̃n

���
 � B [38]

where

#"n � "n � "n�1. [39]

Equation [38] is exactly the same as Eq. [2] if #"n � �n �
�0 � n�, that is, if

"n � "0 � ��2 � �0�n �
�

2
n2, [40]

meaning that the magnetization vectors generated in a
fixed frame of reference by an MR sequence with constant
phase pulses and linearly varying precession angles can
also be obtained by means of a sequence with constant
precession angle and quadratic pulse phase variation, pro-
vided that the frame of reference follows the phase of RF
pulses. As a consequence, the signal measured by setting
the detector phase to k�n�1 in the former scheme is the
same as that measured with the detector phase set to "n �
k�n�1 in the latter. The difference between "n � k�n�1

and "n�k is independent of n; hence, the detector phase
modulation required in the quadratic pulse phase ap-
proach can be thought of as matching the phase of the n-th
readout with the phase of pulse number n � k, as previ-
ously suggested in the special case of echo-shifted se-
quences (k � 1) (16).
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APPENDIX B: PSEUDO-STEADY STATE IN RF-
SPOILED SEQUENCES AS A CONSEQUENCE OF
FUNCTIONAL ANALYSIS RESULTS

In this Appendix it is shown that the pseudo-steady state
defined in the Theory section can be derived from 2 stan-
dard results of operator theory. These can be found in any
textbook on functional analysis, for example, Ref. (31).

Theorem 1: Banach Fixed Point Theorem

Let (E, ���) be a Banach space (i.e., a complete vector space
with norm ���) and T a mapping of E into itself. If T is a
contraction, that is, there is a constant C � 1 such that

	 x, x� � E : �Tx � Tx�� � C�x � x��

then

1. T has a unique fixed point, that is, an element x̃ of E
such that Tx̃ � x.

2. x̃ can be approached by iteratively applying T to any
starting estimate x:

	 x � E : Tnx 3 x̃.

3. An upper bound for the error between x̃ and the
current approximation is given by the following in-
equality:

	 x � E : � x̃ � Tnx� �
Cn

1 � C
�Tx � x�.

Theorem 2

Let (E, ���) be a Banach space and K : E 3 E be a linear
bounded operator. Let us assume that the norm of K, as
defined by

�K� � sup
f�E� �f��1

�Kf�,

is strictly smaller than 1. Then (I � K) is invertible (I being
the identity operator on E) and

	 f � E : �I � K
�1f � lim
n3�

�I � K � K2 � . . . � Kn
f

where the limit is taken with respect to the norm in E.

Application

Let us consider the Banach space E � {M(�) : � 3 �3

continuous and 2� periodic} with the norm

�M��
�� � max��M(�)� � ��
i�1

3

Mi(�)2�1/2

�� � [0, 2�]	.

By defining the application T as

T : E 3 E : M��
 3 A��
M�� � �
 � B

one can rewrite Eq. [2] as

Mn�1
� �� � �n
 � T�Mn

��� � �n�1
�

meaning that the function Mn
�(� � �n�1) can be seen as

the result of (n � 1) iterations of T applied to M1
�. T is a

contraction because A(�) is the product of 2 orthogonal
matrices (conserving thus euclidian distances) and 1 diag-
onal matrix with entries strictly smaller than 1. Therefore,
by virtue of Theorem 1, the sequence Mn

�(� � �n�1)
converges towards the unique fixed point of T. Translating
this in equations leads directly to Eqs. [4] and [6]. Let us
note that, since Theorem 1 is applied in the space E with
the supremum norm, the convergence in Eq. [4] occurs in
the sense of uniform convergence. The third part of The-
orem 1 implies that

max
���0,2��

��Mn
��� � �n�1
 � Mpss��
�
 �

E1
n�1

1 � E1
3M0.

By defining the operator

K : E 3 E : M��
 3 A��
M�� � �


on we can rewrite Eq. [6] as

�I � K
Mpss��
 � B.

For the same reasons as above it holds that

�K� � sup
�M��
���1

�A��
M��
�� � 1.

Therefore, Theorem 2 can be used to solve the equation for
Mpss(�), leading to Eq. [5]. Again, since Theorem 2 is
applied in the space E with the supremum norm, the
convergence in Eq. [5] occurs in the sense of uniform
convergence.

APPENDIX C: PROOF OF EQ. [13]

Let W represent the inversion of the x magnetization com-
ponent, that is, W � diag(�1, 1, 1). The equalities

W2 � I, WA��
W � A���
, WB � B, WP��
W � P���
,

together with Eq. [5], imply that

�P��k�
Mpss��; ��
� � �P��k�
�I

� A��
 � A��
A�� � �
 � . . .�B�

� �P�k�
�I � A���
 � A���
A��� � �
 � . . .�B�

� W�P��k�
�I � A��
 � A��
A�� � �
 � . . .�B�

� W�P��k�
Mpss��; �
�.

By using the complex notation of transverse magnetiza-
tion, this can be rewritten as

�e�ik�MT,pss��; ��
� � ��e�ik�MT,pss��; �
�*.
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This, together with the expression of the steady-state sig-
nal intensity (see Eq. [12]) proves the announced result.

APPENDIX D: PARTITIONING THE PSEUDO-STEADY
STATE MAGNETIZATION

The partition method is based on the following decompo-
sition of the pseudo-steady state magnetization:

Mpss��
 � �
��1

�

�pss,���
 [41]

where

�pss,1 � �Mpss��
�

�pss,��1��
 � A��
�pss,��� � �
 � �A��
�pss,��� � �
�.

This equality is an extension of the series expansion pre-
sented in Ref. (13) for the coherent case and is proved in a
similar way, using the pseudo-steady state equation (Eq.
[6]) instead of the steady-state equation (Eq. [8]). Due to the
relationship (Eq. [7]) between the magnetization states
Mn

�(� ) and the function Mpss(�) in the pseudo-steady state
(n 3 �), the decomposition can be rewritten as

Mn
���
 � �

��1

�

�n,���
 [42]

with

�n,���
 � �pss,��� � �n�1
.

For these new components the recurrence becomes

�n,1 � �Mpss��


�n,��1��
 � A�� � �n�1
�n�1,���


� �A�� � �n�1
�n�1,���
�. [43]

The second step of the partition method consists of
separating longitudinal and transverse magnetization com-
ponents at each step of the recurrence, that is, further
decomposing each term of Eq. [42] to obtain the series
expansion (Eq. [14]) described in the main text. Like in the
coherent case (13), this is achieved by expressing Eq. [43]
in the coordinate system (MT, M*T, Mz) and splitting RF
pulses into a 0°, a 90°, and a 180° component. The gener-
ation of longitudinal and 2 transverse components from a
transverse component is then described by:

�n,�q1. . .q��1�1�1���
 � cos2
�

2
E2ei����n�1
�n�1,�q1. . .q��1�1���


[44]

�n,�q1. . .q��1�10���
 � sin �E2ei����n�1
�n�1,�q1. . .q��1�1���
 [45]

�n,�q1. . .q��1�1�1���
 � sin2
�

2
E2e�i����n�1
�*n�1,�q1. . .q��1�1���


[46]

where the physical longitudinal magnetization associated
with component {q1 . . . q�0} is given by the imaginary
part of �q1. . .q�0

. For an initially longitudinal component,
one obtains

�n,�q1. . .q��j�1�1�0
j�1���
 � �
1
2

sin �E1�n�1,�q1. . .q��j�1�1�0
j���


[47]

�n,�q1. . .q��j�1�1�0
j0���
 � cos �E1�n�1,�q1. . .q��j�1�1�0
k���
 [48]

�n,�q1. . .q��j�1�1�0
j�1���
 �
1
2

sin �E1�*n�1,�q1. . .q��j�1�1�0
j���
.

[49]

In principle, both the transverse and longitudinal parts of
�Mpss(�)�, that is, �n,1(� ) � �MT,pss(�)� and �n,0(� ) �
�Mz,pss(�)�, should be considered at the root of the partition
tree. However, the latter component gives rise to a path-
way that is stopped after just 1 repetition interval (as a
consequence of subtracting the homogeneous component
at each step); hence, only the former is relevant to study
signal intensities, that is, transverse magnetization.

APPENDIX E: PRECISION OF NUMERICAL
ESTIMATES OF THE STEADY-STATE SIGNAL

An upper bound of the difference between current and
steady-state signals is obtained as follows

�Sk,n � Sk,ss� � E2�TE
��MT,n
� �� � �n�1
 � MT,pss��
��

� E2�TE
��Mn
��� � �n�1
 � Mpss��
��

� E2�TE
�E1
n�1�M1

�� � �E1
n�1 � E1

n � E1
n�1 � . . .
�B�


� E2�TE
2E1
n�1M0

where use has been made of Eqs. [3], [5], [11], [12], �M1
�� �

M0, and �B� � (1 � E1) M0. Consequently, the precision of
Sk,n as an estimate of Sk,ss is better than  � M0 if

2E2�TE
E1
n�1 �  [50]

which holds if n is larger than the value given by Eq. [35].
Note that another upper bound for ��Mn

�(� � �n�1) �
Mpss(�)��, that is, 3M0E1

n�1/(1 � E1), could be derived
directly from the Banach Fixed Point Theorem (see Ap-
pendix B). However, this quantity is larger than the upper
bound derived here from the explicit expression of
Mpss(�), and would, therefore, tend to overestimate the
number of steps required to achieve a given precision.
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