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A BOUT 60 YEARS AGO Stewart (I) introduced and for the past 25 years Hamil- 
ton and 
technics 

his 
for 

colleagues (2) have developed 
measurement of cardiac output. 

and extended 
These method 

the indicator-dilution 
.s have more recently 

been applied to measurement of regional blood flow. Although there has been some 
criticism of the use of the indicator-dilution technics to measure blood JEoq its appli- 
cation for this purpose has achieved wide acceptance. 

It was also Stewart (3) who first used these technics to measure the volume of 
blood in the heart and lungs, and again it was Hamilton and his colleagues (2) who 

of mean circulation time to 
that mean circulation time 

determine the 
has also been 

volume 
applied 

developed and emphasized the use 
of a vascular bed. It is of interest 

to the measu 
and the mean 

.rement of the 
time was only 

volume of water conduits (4). 

one of several parameters used. 

This application of the Stewart-Hamilton methods has been subject to consider- 
able controversy and misinterpretation. The mean time has on occasion been con- 
fused with the median time, and several workers have expressed doubt as to the 

in hydraulic engineering 
No theory was presented 

validity or meaning of the measurement of volume as a function of the mean circula- 
tion time (5, 6). 

The basic relationship, 
accepted as obvious by 
fusion which has arisen 

volume = flow times mean circulation time, has been 
proponents of these methods. However, in 
it may be of some value to present a direc 

view of the con- 
t proof of its va- 

lidity under appropriate conditions. 
It is the purpose of this paper to present such a proof, and also to consider the 
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FIG. I. Schema of vascular bed with injection sites P, P’ and sampling sites Q, Q’. 

circumstances under which the indicator-dilution technics provide reasonable meas- 
ures of mean ci.rculation time. In particular, the instantaneous injection and constant 
injection technics will be shown to share essentially the same advantages and defects. 
As the latter method has escaped some of the criticism applied to the former, their 
equivalence may be regarded as additional support for the instantaneous injection 
technic. 

The issues are obscured to a considerable extent by the complex nature of a 
vascular bed. In order to make clear the rationale of the Stewart-Hamilton methods 
we will consider first a relatively simple model in which certain complications do 
not arise. The effects of these complications are considered in SECTION 3. 

I. THE hIODEL 

For simplicity consider a closed flow system, that is, one with a single in-flow 
orifice, P, and a single outflow orifice, Q, (fig. I). The system contains a volume, V, 
of fluid which enters and exits at a constant rate of flow, F. In general, the internal 
structure of the flow system will consist of many branchings and interlacings of blood 
vessels. As a consequence of this, particles of fluid entering at P at the same instant 
will require varying amounts of time to reach Q, the time required for any particle 
depending on the path taken and the velocity with which it travels. Thus one cann.ot 
speak of a single traversal time, but must instead consider a distribution of traversal 
times. No assumptions need be made concerning the relative proportions of particles 
having long or short traversal times; that is, the distribution of traversal times is 
determined solely by the experiment and is not made a part of the theoretical struc- 
ture. 

In addition to the above requirements needed to define volume and flow the 
following assumptions are made. a) The distribution of traversal times for entering 
particles of fluid does not change with time; that is, the particles entering at. P at 
any time are dispersed when they leave at Q in exactly the same manner as the par- 
ticles entering at P at any other time. This property will be referred to as stationarity 
of flow. b) The now of indicator particles is representative of the flow of total fluid; 
that is, the distribution of traversal times for indicator particles is the same as that 
for fluid particles. c) The system has no stagnant pools; that is, fluid anywhere in the 
system is eventually eliminated. (This assumption is needed only for measurement 
of volume. The existence of stagnant pools does not affect the measurement of flow.) 
d) Recirculation of indicator is not present. 

The technics considered require the injection of indicator at P and the measure- 
ment of indicator concentration at Q as a function of time, the indicator being injected 
either nearly instantaneously or continuously at a constant rate. In the instantaneous 
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FIG. 2. Concentration of indicator at 4Ot 
exit as a function of time. Czcrve A results ---o 
from single, instantaneous injection and 
represents a curve obtained when the blue I) 
dye, T-1824, is injected into the systemic 
venous circulation, passes through the pul- 
monary circulatory tree and the heart, and 
is sampled from a systemic artery. The 301- 
continuous line is the curve obtained ex- 
perimentally, the break in the smooth curve 1 
at 18 seconds, indicated by the arrow, is 

.- 
-< 

interpreted to represent the appearance of 
detectable recirculating dye. The dashed line z 

which continues the smooth curve is an 
extrapolation (see legend to fig. 4) and 

20- I 

represents the curve that would obtain if z .- 

there were no recirculation. 5 

CzLrve 23 represents the concentration- -2 

time curve to be expected when dye is in- 5 
jetted continuously at constant rate. It is 5 
the integral of czcrve A, with the concentra- 10 -u 
tion units on the ordinate adjusted to give a 
maximum concentration within a practical 
range. The break in its asymptotic behavior - 

at 18 seconds has the same significance as 
the break at that time in curve A; recircu- 
lating indicator must appear simultaneously 

--. 
I 

in the two curves. The dashed line which 5 IO I5 20 25 
extends the smooth curve toward a maximum and constant value, indicated by the dashes at 38.6 
mg/l. on the ordinate scale, is an extrapolation (see legend to fig. 4) and represents the curve that 
would obtain if there were no recirculation. 

injection method, Q units of indicator are injected at P and the concentration at Q 
will rise to a maximum and then decrease to zero as in figure 2, curve A (recirculation 
not present). In the continuous injection method indicator is injected at a rate of I 
units per unit time and the concentration of indicator will rise asymptotically to a 
constant level as in figure 2, curve B. The fact that the curve resulting from constant 
injection is simply the integral of that resulting from single injection was first pointed 
out by Hamilton and Remington (7). 

2. THEORY OF INDICATOR-DILUTION METHODS 

Instantaneous Injection. In the model described above, when indicator is intro- 
duced at P (fig. I), it must all, in due time, leave the system at Q, giving a concentra- 
tion vs. time curve such as shown in figure 2, czcrve A. If flow is great, the indicator 
will be mixed with a large amount of blood and the concentration at Q (fig. I) will 
be low. This relationship is made the basis of a quantitative method for measuring 
flow. Thus, let Q units of indicator be injected at P at time zero and let the observed 
concentration at Q, which varies as in figure 2, be denoted by c(t). Then the amount 
of indicator which leaves the system during a small time interval, t to t + dt, is the 
concentration of indicator at Q multiplied by the volume of fluid which leaves the 
system during this time interval, or c(t) times F dt. Since all of the indicator finally 
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leaves the system, the amount injected, Q, equals 
system du ring all subsequent time intervals, or 

the sum of t,he amou .nts leaving the 

s aI Q = c(t) (F dt) 
0 

al 

= F 
s 

c(t) dt. 
0 

0 I 

From this it follows that the area under the curve of indicator concentration vs. 
,.a 

time, or . / c(t) &, is equal to q/F. Solving for F we may write 

F 
Q = 

I 

.Q) 
c(t) dt . 

0 2 

-0 

Now Fe(t) is the rate at which indicator is leaving the system at time 2i. For the 
discussion which follows it. will be convenient to introduce the function 

w Fc (0 C- 
Q ’ 

(3) 

which is the fraction of injected indicator leaving the system per unit time. Under 
assumption b, the distribution of traversal times for indicator particles is the same 
as that for all fluid particles. Therefore, of those fluid particles which entered the 
system at time zero, the fraction leaving per unit time is h(t). Thus equation 3 frees 
us of the necessity for considering indicator particles and makes available the dis- 
tribution of traversal times for all fluid particles. Since all the fluid entering the system 
at zero time must eventually leave, we have 

I h(t) dt = I, 
0 

as may be verified by combining equations z and 3; h(t) will be recognized as the 
frequency function of traversal times. 

The fundamental relationship, volume = flow multiplied by mean circulation 
time, may be established as follows. Consider the fluid present in the system at any 
particular instant, say at time zero. The particles of which this fluid is composed may 
be distinguished by the time each requires to traverse the system from P to Q. To 
find the volume of the system it is only necessary to find the volume of those particles 
having traversal times in the vicinity of t, specifically in the interval t to t + dt, and 
to sum these elements of volume, dV, for all such time intervals. The particles of 
this kind present at time zero will have entered the system at times extending back 
from zero to a time Z: units earlier. Those which entered earliest are now ready to 
leave the sys tern; those which just entered will leave the system a t time t. Now, the 
rate at which fluid enters the system is F, and the fraction of entering particles which 
require times between t and t + dt to leave is h(t) dt. Therefore, the rate at which 
such particles enter the system, and also the rate at which they leave it9 is F h(t) dt. 
Thus, the particles of this kind present in the system at time zero leave at the rate 
F h(t) dt and continue to do so until time t, at which instant all such particles will 
have been eliminated. The volume of such particles is the time required for them to 
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leave the system multiplied by the rate at which they leave, or, dl’ = [t][F h(t) &]. 
Summing for all such time intervals we get 

!* 

V = (YFh(t)dt or V= 
*'O 

F ,a t?z(t) dt. (5) 

Since h(t) is the frequency function of traversal times, IQ) i: h(t) dt is just the mean 
*O 

of the traversal times, or the mean circulation time, which we will denote by f. 

Z = i O” th(t) dt. 
” 0 

(6) 

In terms of the observed function, c(t), this is 

1 TV dt 
f= l ;* . 

I c(t) dt 
0 

(7) 

Thus, finally, we may write 

V=F& (8) 

which is our fundamental relationship: volume = flow multiplied by mean circulation 
time. As stated earlier this derivation requires no assumptions about the form of the 
frequency function, h(t), which is determined solely by the observed curve of c(t) vs. 
time, as indicated by equation 3. 

Constant Injection. If, instead of a sudden single injection, indicator is intro- 
duced at a steady rate, the concentration of indicator in the fluid leaving the system 
will increase until all of the indicator-free fluid initially in the system is washed out, 
as shown in figure 2, curve B. If indicator is introduced at the rate of I units per unit 
time, its concentration in the blood entering the system is clearly I divided by the 
rate at which fluid enters the system; that is, I/F. This is the concentration that will 
be approached at Q (fig. I) as indicator-free fluid is washed out of the system. Writ- 
ing Cmax for the limiting concentration at Q we have 

c max = w . (9) 

This equation follows from an important general formula given by Stephenson (8) 
which is derived below. 

If indicator is introduced at P at the rate i(t), not necessarily constant, the con- 
centration of indicator at Q, C(t), will be determined by the rate at which indicator 
was introduced at all times before t and by the frequency function of traversal times, 
h(t). Consider the contribution to the rate at which indicator is leaving the system 
at time t made by indicator introduced in the vicinity of s time units earlier, spe- 
cifically in the interval s to s + ds time units before t. The amount of indicator intro- 
duced during this interval is i(t - s) ds. The fraction of this amount being eliminated 
per unit time at time t, s time units later, is h(s), in accordance with the argument 
following equation 3. Therefore, the contribution to the rate at which indicator is 
leaving the system at time t made by indicator introduced between s and s + ds 
time units earlier is the product [h(s)l[i(t - s) ds]. 
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Summing for all such time intervals before 1, the rate at which indicator is leav- 

s 

m 
ing the system at time t is i(t - s) h(s) ds. Since, also, the rate at which indicator 

0 

is leaving the system is equal to the product of concentration and flow, we have 

c(t) 
I * 

=- 
s F o 

i(t - s)h(s) ds. 

For the special case of constant injection 

i(t) = 
i 

0 for t < 0 
I for t > 0, - 

where I is the constant rate of injection. Equation IO then reduces to 

w> I t =- F o h(s) ds* s 

( ) IO 

( > II 

(4 

Now, it will be recalled that h(s) ds is just the fraction of entering fluid particles 
with traversal times between s and s + ds. The sum of h(s) ds over all time intervals 
less than t gives the fraction of entering fluid particles with traversal times less than 
t. This integral defines the distribution function 

H(t) = It h(s) ds. 
0 

( 3) I 

Note that since 
s 

m h(s) ds = I, lim H(t) = I. 

Equation 12 may now be wriiT& 

(Hereafter C(t) will be used solely to denote the concentration resulting from a con- 
stant injection at the rate of I units per unit time.) As t gets large C(t) approaches 
C MItX, and since lim H(t) = I, we get equation 9, Cmax = I/F. 

The volume-o? the system is now easily determined from the fact that at any 
time, t, the amount of indicator in the system, say Q(t), is the difference between the 
amount introduced and the amount which has left the system. That is, 

Q(t> = (input up to time t) - (output up to time t) 

s 

t 
= It - FC(t) dt 

0 

s 

t 

= [I - FC(t)] dt 
0 

05 
t 

Q(t) = 
IS [ I - H(t)] dt, 

0 
( 5) I 
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which follows from equation 14. For large t the average 
system, that is Q(t)/V, approaches c maxy SO 

concentration throughout the 

s Q, 
V = F [I - H(t)] dt. 

0 
( 6) I 

Written in terms of observed concentrations of indicator this becomes 

V 
F * =- 

c s 
CC max - C(t)] dt. ( 7) I 

max 0 

- C(t)] dt may be determined as the area between the curve C(t) vs. t 

and the line C’max VS. t; see fig. 2, curve B.) 
Relationship Between Formulas for Single and Constant Injection. The two 

methods, single and constant injection, must lead to the same estimate of volume, 
although the identity of equations 8 and ~6 is not self-evident. To prove the identity 

we must show that the factor 
s 

a0 
[I - H(t)] dt in equation 1-6 is, in fact, the mean 

0 

circulation time, f, which appears in equation 8. This may be seen by an integration 
by parts; thus 

s 

t 

[ I- H(s)] ds = I[I - 
0 

H(t)] + It sh(s) ds 
0 

05 

s 00 [ I - H(s)] ds = lim t[ I - 
0 t-+00 

H(t) ] + /m sh(s) ds. 
0 

It is evident from figure 3 that the integrals must both be finite or both infinite 
(i.e. infinite volume) and that in the former case lim t [I - H(t)] = o. Since the 

i-00 
volume must be finite, it follows that 

s aI a0 [ I - H(s)] ds = s sh(s) ds = i’> 
0 0 

( 8) I 

which shows the equivalence of equations 8 and 16. Since the derivation of equation 
16 is independent of equation 8, this identity provides an independent demonstration 
of the basic relationship, volume = flow multiplied by mean circulation time. 

As we have seen, the height of the curve resulting from a constant injection is 
proportional to the area under the curve resulting from a single injection. It is im- 
portant to recognize that the sole condition required for this relationship to hold is 
that the flow be stationary. Even in the presence of recirculation this relationship 
is maintained. This was demonstrated experimentally by Howard, Hamilton and 
Dow (9). Thus, the argument sometimes offered that one or the other method is 
less subject to the difficulties arising from recirculation appears to be without founda- 
tion. 
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rt 

FIG. 3. [I 
J 

- H(s)] ds is represented by the sum of the two shaded areas, and I 

t 

sh( 
0 r) 

the lower shaded area. For the limit of this area as t --) 00 to remain finite, it is intuitively 
.t the area of the upper rectangle must approach zero, and this can easily be proved. 

s) ds 

clear 

3. RELATION OF THE MODEL TO REAL VASCULAR SYSTEMS 

Formal treatment of the sort undertaken here is only as good as the model which 
it analyzes. Since vascular systems, in general, are not apt to be represented accu- 
rately by a stationary system with a single input and single output, it is important 
to consider the effect of relaxing some of the restrictions on the original model to 
approach more closely the real situation, with the understanding that no thoroughly 
defined system can be expected to mimic completely all the phenomena of physio- 
logical importance. 

Finite Injection Time. In the instantaneous injection method it was assumed 
that Q units of indicator could be injected at the instant t = o. In fact some possibly 
non-negligible time is required to accomplish the injection. This in no way affects 
the determination of flow, but it does require a slight modification in the determ ina- 
tion of volume. This is merely to shift the zero point from the start of injection to the 
average injection time. If the rate at which indicator is injected varies symmetrically 
(e.g. a constant rate for a short interval) the appropriate zero is midway between the 
start and finish of the injection. 

Structure of the System. A potentially serious weakness of the model lies in the 
condition that it be closed, i.e. that it have a single input and single output. However, 
the results of the analysis can usually be interpreted when this restriction is removed. 
Consider now the situations illustrated in figure I. A single artery, P, divides into a 
number of branches, one of which is P’, and these subdivide, ultimately to terminate 
at capillaries. Venous channels coadunate progressively, one of many being repre- 
sented at Q’, and ultimately all venous drainage flows out through the single channel, 
Q. Injection at P and sampling at Q are the case of the original model. 

If injection occurs at P’ and sampling at Q (many inputs, single output), the 
equations developed for the closed system still permit measurement of flow, but the 
volume measured by application of these equations will include some portion of 
other input channels. From the argument leading to equadion 5 it is clear that the 
portion of each uninjected input channel included properly in the measured volume 
begins at a site into which injection 
ured from the site actually used. 

would produce the same mean time as was meas- 
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If injection occurs at P and sampling at Q’ (single input, many outputs), the 
equations developed for flow again hold. The volume includes a portion of each out- 
put channel up to that site at which the mean time is the same as that determined 
for the sampling site actually used. 

In either of these cases, P’ -+ Q or P -+ Q’, the total flow passes either entrance 
or exit and, in the case of continuous injection, flow can be determined by the limit- 
ing concentration of the indicator. However, if injection occurs at P’ and sampling 
at Q’ (many inputs, many outputs) the interpretation is more difficult. If both injec- 
tion and sampling sites are minor branches of the system, determination of flow and 
volume may bear little relation to the quantities of interest. For a reasonable inter- 
pretation of the measurements further assumptions are necessary. For example, if 
there is reason to believe that the concentration vs. time curve is essentially the same 
in all output branches, the situation reduces to that of many inputs, single output. 
A weaker assumption is that the flow from the site of injection becomes mixed in 
the sense that the fraction of it leaving through any output channel is proportional 
to the flow in that channel. In the case of constant injection, this assumption is 
equivalent to saying that the limiting concentration in each channel is the same. It 
is important to note that for certain vascular beds these assumptions can be and 
have been put to experimental test (IO). If this latter assumption holds, flow can 
be determined by the equations established. The volume can be interpreted as follows. 
Include each output channel up to the point at which the mean time is the same as 
that at the actual sampling point, and include each input channel up to the point 
at which the average mean time to all the output points just determined, weighted by 
the flow through each output channel, is the same as that at the actual sampling 
site. 

In general, then, the volume determined by application of these equations is 
constructed by joining all inputs at an appropriate point and all outputs at an ap- 
propriate point so that the limiting concentration, in the case of constant injection, 
and the mean time are the same as in the actual experiment. (It is not necessary 
that the shape of the concentration curve be the same in each channel.) 

This description of the volume measured may seem artificial and indeterminate. 
Nevertheless, it is of assistance in conjuring up an image of the volume and in decid- 
ing whether .a particular experiment is likely or not -to give reasonable results. If 
the system being measured is well understood, it may be possible to decide that the 
contributions to the measured volume of accessory input and output channels are 
negligible and can be ignored. 

Effect of a Collecting Catheter. The concentration of indicator is not always 
measured directly at the exit of the system, Q. Often a sampling device, such as a 
catheter, is interposed between Q and the site at which concentration is measured. 
The mean time determined in such an experiment is the sum of the mean time re- 
quired to traverse the system and the mean time required to traverse the catheter. 
In effect the catheter acts as another outflow branch and its effect may be analyzed 
as in the preceding section. If, however, the blood sampled by the catheter is repre- 
sentative of the total outflow, the error in volume contributed by it is simply the 
mean time required to traverse the catheter, say ZC, times the total flow through the 
system, F. If tC is known, the volume of the system may be determined from the 
formula 

V system = F(t 
- 

0 c l ( 9) I 
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Stationarity. The stationarity condition will be violated particularly by any Stationarity. The stationarity condition will be violated particularly by any 
system including the heart, because both volume and flow change phasicly. It might system including the heart, because both volume and flow change phasicly. It might 
be pointed out, however, that the constant-injection method is relatively insensitive be pointed out, however, that the constant-injection method is relatively insensitive 
to violation of stationarity since the’ input-output relationship used to derive equa- to violation of stationarity since the’ input-output relationship used to derive equa- 
iions IO and 12 remains valid. To the extent that a steady-state output concentration tions IO and 12 remains valid. To the extent that a steady-state output concentration 
is reached, the results apply to determination of average flow and average volume. is reached, the results apply to determination of average flow and average volume. 
On the other hand, the results of a single injection may depend greatly on the rela- On the other hand, the results of a single injection may depend greatly on the rela- 
tion of the time of injection to the phase of the cardiac cycle and may be unsatis- tion of the time of injection to the phase of the cardiac cycle and may be unsatis- 
factory. The more cycles occurring during the evolution of the indicator-dilution factory. The more cycles occurring during the evolution of the indicator-dilution 
curve, the less important this violation is likely to be. A careful treatment of non- curve, the less important this violation is likely to be. A careful treatment of non- 
stationary systems is somewhat complex and will not be pursued further. stationary systems is somewhat complex and will not be pursued further. 

Representative Behavior of Indicator Particles. a) Inhomogeneity of blood and Representative Behavior of Indicator Particles. a) Inhomogeneity of blood and 
signijcance of the venous hematocrit. It is well known that the mean velocity of erythro- signijcance of the venous hematocrit. It is well known that the mean velocity of erythro- 
cytes is greater than that of plasma in flowing blood. Consequently, the distribution cytes is greater than that of plasma in flowing blood. Consequently, the distribution 
of traversal times determined from, for example, T-r&+labeled plasma differs from of traversal times determined from, for example, T-r&+labeled plasma differs from 
the distribution of erythrocyte traversal times (I I, I 2). Determination of indicator the distribution of erythrocyte traversal times (I I, I 2). Determination of indicator 
concentration, then, permits a direct estimate of volume and flow of plasma, but concentration, then, permits a direct estimate of volume and flow of plasma, but 
not of whole blood. It is customary to compute whole blood flow or volume by divid- not of whole blood. It is customary to compute whole blood flow or volume by divid- 
ing the measured plasma flow or volume by a factor ( IOO - venous hematocrit). ing the measured plasma flow or volume by a factor ( IOO - venous hematocrit). 
It is the purpose of this section to show that such a computation is valid only with It is the purpose of this section to show that such a computation is valid only with 
respect to estimation of flow and to introduce what appears to be a new concept respect to estimation of flow and to introduce what appears to be a new concept 
concerning the physiological significance of the venous hematocrit. concerning the physiological significance of the venous hematocrit. 

Let the rate at which erythrocytes flow through a vein be F, and let the rate Let the rate at which erythrocytes flow through a vein be F, and let the rate 
at which plasma flows through the same vein be PP. If  sampling of venous blood, at which plasma flows through the same vein be Fp. I f  sampling of venous blood, 
as ordinarily performed, is representative of the total flow through the vein, then as ordinarily performed, is representative of the total flow through the vein, then 
we may consider the hypothetical case in which the vein is cannulated a.nd its entire we may consider the hypothetical case in which the vein is cannulated a.nd its entire 
flow collected. In one unit of time the collecting vessel will contain a volume FE flow collected. In one unit of time the collecting vessel will contain a volume FE 
of erythrocytes and a volume F, of plasma, a total volume of blood, FE + FP. When of erythrocytes and a volume F, of plasma, a total volume of blood, FE + FP. When 
this collecting vessel is centrifuged it will be found, therefore, that the hematocrit this collecting vessel is centrifuged it will be found, therefore, that the hematocrit 
(as %) is (as %) is 

Ht = [&/(I% + Fp)] IOO = (F,lF&oo Ht = [&/(I% + Fp)] IOO = (F,lF&oo 

and IOO - Ht = (Fp/FB) and IOO - Ht = (Fp/FB) 100, 100, 

where FB = where FB = FE + Fp . Thus the hematocrit measures the ratio of erythrocyte flow FE + Fp . Thus the hematocrit measures the ratio of erythrocyte flow 
to total blood flow and not the ratio of erythrocyte volume to total blood volume. to total blood flow and not the ratio of erythrocyte volume to total blood volume. 
Blood flow, therefore, can be calculated from plasma flow by a simple hematocrit Blood flow, therefore, can be calculated from plasma flow by a simple hematocrit 
factor. factor. 

The calculation of blood volume from a knowledge of either plasma volume or of The calculation of blood volume from a knowledge of either plasma volume or of 
erythrocyte volume is more complicated. Since erythrocytes travel faster than does erythrocyte volume is more complicated. Since erythrocytes travel faster than does 
plasma the mean traversal time for erythrocytes will be less than that for plasma. plasma the mean traversal time for erythrocytes will be less than that for plasma. 
Consequently a given flow of erythrocytes corresponds to less volume than does the Consequently a given flow of erythrocytes corresponds to less volume than does the 
same flow of plasma, as is evident from the general relation V = Ff. Note first that same flow of plasma, as is evident from the general relation V = Ff. Note first that 
FE = FE = Fp Ht/(~oo - Fp Ht/(~oo - Ht). Then, substituting V/f for F we have Ht). Then, substituting V/f for F we have 

and 

vd!# = vp ( ; )  ( , , , “ .HJ  l 
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The volume of blood VI, = VE + VP , or 

where subscripts B, P and E refer to values for whole blood, plasma, and erythrocytes, 
respectively. Thus a solution for blood volume from a knowledge of plasma volume 
requires measurement not only of the venous hematocrit but also of the ratio of mean 
traversal times of plasma and erythrocytes through the system for which the volume 
is estimated; a single hematocrit correction factor is insufficient. 

Indeed it is well established that estimation of blood volume by multiplying 
plasma volume by a venous hematocrit factor yields a value which is in disagreement 
with the sum of values obtained by direct estimation of plasma volume and of erythro- 
cyte volume, measured by the use of two appropriate indicators (13, 14). For ex- 
ample, in man, the so-called total body hematocrit, V&V, + VP), obtained by 
measurement of both I& and VP , has been found to be less than the venous hema- 
tocrit by a factor which is rather consistently equal to 0.91 (13). This finding and 
similar observations in experimental animals (14) have led to a search for excess 
plasma in the body, but the discrepancy has remained incompletely explained. It is 
proposed here that the discrepancy can be explained by recognizing the venous 
hematocrit as a ratio of flows, as we have described it above. Since the venous hema- 
tocrit is not a ratio of volumes there is no a priori reason for demanding that it agree 
with the total body hematocrit. 

The ratio, K, of the total body hematocrit to the venous hematocrit, EJf, can 
be expressed by 

Since the venous hematocrit is a ratio of flows and (H~/Ioo) = (IQ/(& + FP) 

then Fp = FB Ioo - ( HO 

Ht. 
. Substitution of this value for Fp leads to 

K= 
&Ht + ?&oo - Ht) I”* 

It can be estimated from Fries’ observation on traversal of plasma and of erythrocytes 
through the forearm in man (II) that & is approximately in the range of 1.1 fE to 
1.2 fB . Substitution of 1.15 & for & and of a venous hematocrit equal to 40 yields 
K = 0.92, in agreement with experimental estimates (13). 

b) Nonrepresentative behavior within plasma. The possibility of discrepancy in the 
measurement of plasma flow and volume arises from the fact that plasma itself is 
composed of many molecular species, only one of which, in usual practice, is tagged 
by an indicator. However, most molecular species in plasma may be expected to 
follow essentially identical paths and to have essentially identical distributions of 
traversal times. 

A different type of nonrepresentative behavior arises from the fact that some 

substances leave the capillary bed by exchanging across capillaries. For example, 
according to the Starling hypothesis net loss of water occurs over one segment of the 
capillary bed and net gain over another. In the case of T-1824, which is essentially 
bound to plasma albumin and so confined to the vascular bed, transcapillary ex- 
change of plasma water will produce concentrations of T-1824 (or albumin) in the 
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capillary in the region of water exchange which will exceed the limiting concentra- 
tion at exit. Under these circumstances, although analysis of the concentration curve 
still leads to a proper estimate of the quantity of indicator captured within the system, 
it is no longer true that the volume of the system is this quantity divided by the 
limiting concentration at exit, C,,, , and estimation of volume from -this ratio, 
equation 12, leads to a falsely high value. The magnitude of the error depends upon 
many factors, but it is limited by the fraction of the flow which crosses the capillary 
wall (whether or not thisfraction is returned to the blood in anotherportionof the capil- 
lary) and also by the portion of the volume to be measured which is concerned with 
transcapillary exchange. In skeletal muscle, for example, based on estimates ob- 
trained in the isolated hind leg of the cat (IS), about 5 % of the flow is exchanged across 
the capillary. If the volume in the capillaries is as much as 30 % of the vascular volume 
in the limb, the error of estimate of volume should be no greater than 30% of 5 %, or 
1.5 %. 

Recirculation. Since recirculation has been permitted in the usual practice of 
indicator-dilution experiments, it is essential that its presence be treated. In experi- 
ments in which a single rapid injection of indicator has been used, recirculation has 
been eliminated from the calculations by extrapolation of the down-limb of the con- 
centration vs. time curve on the assumption that the decay in concentration would 
have been exponential in the absence of recirculation (see fig. 4, curve A). A similar 

FIG. 4. Extrapolation of indicator- 
dilution curves. These curves are derived 
from the same data used to plot the curves 
in figure 2. Curve A is the same as the in- 
stantaneous injection curve in figure 2, 

plotted on a semi-logarithmic scale. If late 
exponential decay does occur and its pres- 
ence is established prior to the contribution 
of recirculating indicator, the curve to be 
expected in the absence of recirculation can 
be constructed by extrapolation of the 
straight line, as indicated by the dashed line; 
that is, it is assumed that after some time, 
tr, c(t) takes the form c(t) = k’e-+‘. This 
extrapolation has been used widely since it 
was first proposed by Hamilton et al. (2). 

Czlrves B, C and D are constructed 
from the data used in plotting curve B of 
figure 2, which is C(t), the concentration of 
dye resulting from constant injection. Since 

s 

t 

C(t) = (I/q) c(s) ds, the assumption of 
0 

exponential decay for c(t) after some time, 
tl, leads to the form C(t) = Cm& - eHkt) 
for C(t) after tl. Cmax may be established 
graphically by choosing trial values of C,,, 
and plotting Cmax - C(t) on semi-logarith- 
mic paper as shown. The value of CmRX 
giving the best straight line for Crnax - C(t) 

is the value chosen. Curve B shows the re- 
sults using C,,, = 38.6 mg/l. Curves C and D show the results using values approximately 107~ 
higher and lower than 38.6. It will be seen that cuyves C and D show marked curvature and that 
curve B is linear over the same range in which carve A is linear and has the same slope. The dashed 
line extending the linear portion of carve B represents the values of Cmax - C(t) to be expected in 
the absence of recirculation. 
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extrapolation may be made in the case of constant injection (see fig. 4, curve 23). 
In either case, when recirculation occurs early, there may be doubt that sufficient 
data have been obtained to warrant the extrapolation and large errors are possible. 
Alternative analyses, based on consideration of recirculation as an essential event, 
have been formulated by others (see next section), and experimental methods based 
on one of these may be useful in the case of uncertain correction for recirculation. 

4. ALTERNATIVE APPROACHES 

The analysis given herein has formalized the methods developed by Stewart 
(I), Hamilton and his colleagues (2), and others. The variation introduced by Lewis 
(6) amounts to a special choice of quadrature formula for determining mean circula- 
tion time; that is, Lewis has in fact calculated (q/F)h(t) due to a single injection, then 

,Q, 
evaluated [I 

I 
- H(s)] ds, which is, as shown above, exactly the mean circulation 

0 

time. 
A different method of using data from a single injection was proposed by New- 

man et al. (16). They propose a model in which portions of the vascular system are 
likened to mixing chambers. If indicator is instantly and thoroughly mixed with the 
fluid in a single chamber, the concentration of indicator leaving the system will be 
proportional to the mean concentration throughout the system; that is, concentra- 
tion at outflow will exhibit exponential decay, the rate of decay being equal to flow 
divided by the volume of the chamber. If a number of such chambers of different 
volume are connected in series, the dominant rate of decay will be determined by the 
largest volume in the series. Since the rate of decay is measured experimentally, and 
flow can be calculated by the usual means, this largest volume can be estimated. 
The aim of this method, therefore, differs from the aim of the mean circulation time 
method, the former claiming to estimate only a portion of the volume estimated by 
the latter. However, it should be pointed out that in the case of a single mixing cham- 
ber model, assuming for the moment that the model applies, the two methods need 
not give identical answers. According to Newman et al., the single mixing chamber 
produces a concentration vs. time curve described by a lag exponential of the form 
co e-k t t- 1,) where ta represents the least time required for indicator to travel from 
the site of injection to the site of sampling, co is the maximum concentration, and K 
is a constant. They equate K to F/V, or V = (F/K). However, the mean time of an 
exponential is I/K, and the mean time of the lag exponential is (I/K) + t, . Therefore, 
volume calculated by the mean time method is V = F( r/k + tJ. Since t, may be 
appreciable compared to I/K, the two estimates of volume may differ considerably. 

Using the same basic formulation as in this paper Stephenson has given a more 
highly developed mathematical approach (8) in which recirculation is made the 
central feature. Estimates of flow and volume are derived from the asymptotic form 
of concentration curves approached under two types of constant injection, one being 
injection within V and the other injection outside V. 

An independent analysis appropriate to constant injection at a single site is 
given by Zierler (IO). 

An extension of Stephenson’s mathematical methods is employed by Sheppard 
et a2. (17) for the case of indicator which diffuses out of the flow system. Experimental 
trials on dogs gave volumes which were smaller than those determined by Stewart’s 
traditional method. 

The comparative usefulness of the asymptotic approach and the traditional 
methods introduced by Stewart and by Hamilton and co-workers will depend upon 
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the system under study. If recirculation begins so early that it is impossible to get an 
adequate picture of h(t), the traditional methods fail. However, if a simple correction 
for recirculation is adequate, flow and volume can be determined much more simply 
and perhaps more accurately by the traditional methods discussed in this paper. 
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