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Abstract: Gadolinium-based contrast media (GBCM) toxicity in patients with kidney disease is a con-
cern for the possible development of systemic nephrogenic fibrosis and possible renal complications.
This review focuses on the pathological mechanisms underlying the potential kidney toxicity of
gadolinium. Gadolinium, as a free compound (Gd3+), is highly toxic in humans because it competes
with divalent calcium (Ca2+) and magnesium (Mg2+) ions, interfering in some relevant biologic pro-
cesses. Its toxicity is blunted by the complexing of Gd3+ with a carrier, allowing its use in magnetic
resonance imaging. The binding reaction between gadolinium and a carrier is thermodynamically
reversible. Consequently, under some conditions, gadolinium can be released in the interstitial space
as a free Gd3+ compound with the possibility of toxicity. Other metals such as iron, copper, and
calcium can interfere with the binding between gadolinium and its carrier because they compete for
the same binding site. This process is known as transmetallation. In patients with kidney impairment,
conditions such as low clearance of the Gd-carrier complex, acid-base derangements, and high serum
phosphorous can increase the presence of free Gd3+, leading to a higher risk for toxicity.

Keywords: gadolinium-based contrast media; toxicity; kidney damage

1. Introduction

Gadolinium is used as a contrast media agent in magnetic resonance imagining (MRI).
Until recently, gadolinium-based contrast media (GBCM) was considered to have a low
risk of nephrotoxicity or other side effects. However, some reports have demonstrated the
potential toxicity of GBCM, especially in patients with kidney impairment [1]. This concern
for toxicity was largely related to the association of nephrogenic systemic fibrosis (NSF) in
patients with kidney impairment [2] but also with its potential nephrotoxicity [3–5]. The
pathological mechanisms of NSF have been well described, while a more limited number of
reports are available on the mechanisms nephrotoxicity. We hypothesize that gadolinium
nephrotoxicity may be underrecognized because it is generally mild and does not affect
serum creatinine levels in most cases. Unfortunately, in some conditions such as kidney
impairment, a subclinical kidney injury may occur where there is a lack of serum creatinine
rise. This injury may decrease kidney reserve and, over time, may manifest as clinically
evident chronic kidney disease (CKD).

This review explores the pathological aspects of GBCM toxicity and analyses re-
ports showing how new biomarkers of kidney damage could reveal gadolinium-induced
nephrotoxicity.
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2. The Pathological Mechanism of Gadolinium Toxicity

Gadolinium is a heavy metal of the lanthanide group with a molecular weight of
157 Daltons and known paramagnetic properties. Gadolinium is highly toxic in humans
when present as a free ionic compound (Gd3+) [6]. Its toxicity is related to transmetallation
processes. Gd3+ has a comparable ionic radius of divalent calcium (Ca2+) and conse-
quently competes with Ca2+ in all biological processes [7]. This competition can lead to an
inhibition of voltage-gated calcium channels, with inhibition of nerve impulse transmis-
sion and blockage of all Ca2+ dependent enzymes such as de-hydrogenases, kinases, and
ATPases [8]. This inhibition may affect mitochondrial function and, more broadly, impair
cellular survival.

Furthermore, at physiologic pH, free Gd3+ has a high tendency to precipitate in
tissues such as the liver, brain, spleen, kidney, and bone [9–11], creating an insoluble
salt which activates inflammation and subsequent fibrosis [7,12]. Gadolinium must be
bound to a carrier molecule to overcome the toxicity of Gd3+ and to take advantage of
its paramagnetic characteristics for body imaging. The reaction between Gd3+ and its
carrier is reversible, and the binding force between the carrier and Gd3+, defined by the
thermodynamic constant of stability, depends on the type of carrier and external conditions.

2.1. The Influence of Carrier Molecules on Complex Stability

In 1988, the first contrast agent specifically designed for MRI, gadopentetate dimeg-
lumine (Magnevist®), became available for clinical use. Since then, eight other GBCMs
have been developed and approved in many regions worldwide. Currently, GBCM is
categorized depending upon their shape (linear versus macrocyclic) and on their charge
(ionic versus nonionic). Macro-cyclic carrier molecules bind Gd3+ in a cyclic structure and
tend to hold Gd3+ more avidly, while linear carrier molecules tend to have a weaker bond
and dissociate from Gd3+ more easily [7,8]. Table 1 reports the principal characteristics of
the most commonly used GBCM.
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Table 1. Gadolinium-based contrast media (GBCM) characteristics.

GBCM Chelant
Structure Charge Viscosity (mPa’s)

at 37 ◦C
Osmolality

(mOsm/kg) at 37 ◦C
Conditional Stability

(logKcond)
Excess Ligand

(mmol/L)
Renal Excretion
(T1/2 in Hours)

EMA
Recommendation

Gadopentetate
(Magnevist) linear ionic 2.9 1960 18.4 1 1.6 Suspended use in EU

Gadopentetate
(Magnevision) linear ionic 2.9 1960 not available not available not available Suspended use in EU

Gadodiamide
(Omniscan) linear non-ionic 1.4 789 14.9 25 1.3 Suspended use in EU

Gadoxetate
(primovist) linear ionic 1.4 688 18.7 1.3 1.6 Maintained use in EU

Gadoteridol
(Prohance) macrocyclic non-ionic 1.3 630 17.1 0.5 1.6 Maintained use in EU

Gadobenate
dimeglumine
(Multihance)

linear ionic 5.3 1970 18.4 0 1.2–2 Restrict use in
liver scan

Gadoversetamide
(OptiMark) linear non-ionic 2.0 1110 15.0 50 1.7 Suspended use in EU

Gadoterate
meglumine
(Doratem)

macrocyclic ionic 2.0 1350 19 0 1.6 Maintained use in EU

Gadobytrol
(Gadovist) macrocyclic non-ionic 4.9 1603 14.8 1 1.5 Maintained use in EU

Gadoterate
(Clariscan) macrocyclic ionic 2.1 1350 not available not available 1.6 Maintained use in EU

Gadoterate
(Dotagraf) macrocyclic ionic 1.8 1350 not available not available 1.6 Maintained use in EU

Gadobutrol
(Gadovist) macrocyclic non-ionic 4.9 1603 14.8 1 1.5 Maintained use in EU
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2.2. The Influence of External Conditions on Complex Stability

The environment plays an important role in the stability of the Gd3+-carrier complex.
Specifically, the stability of Gd3+-carrier depends on pH; temperature [13]; the number
of free carrier molecules in the solution [14]; and the presence of other metals that can
compete for the carrier such as zinc (Zn2+), copper (Cu2+), iron (Fe3+), Ca2+, sodium
(Na+), potassium (K+), and magnesium (Mg+) [14]. Cacheris et al. studied how the
solubility of the Gd3+-carrier complex was influenced by pH with an acidic pH facilitating
the dissociation rate of the Gd3+-carrier complex [15]. Of great importance is that Zn2+,
Cu2+, Fe3+, Ca2+, Na+, K+, and Mg+ are competitive with Gd3+ for the binding site of
carrier molecules in a process known as transmetallation (Figure 1).
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Figure 1. Transmetallation is a dynamic process where the presence of other metals such as Zn2+,
Cu2+, and Ca2+ can interfere with Gd3+-carrier complex by competing for the binding site. In this
example, Zn2+ displaces Gd3+ with the release of free Gd3+.

Not surprisingly, different ions show different affinity profiles for a carrier, and these
ions also have different endogenous concentrations that affect their ability to compete for
binding sites on the carrier. In physiological conditions, the metals that could displace Gd3+
in the transmetallation process are Zn2+, Cu2+, and Ca2+ [12]. In this case, the reaction
occurs directly on the Gd3+-carrier complex. Among the endogenous metal ions, Zn2+
seems to have the greatest influence when affecting Gd3+ release from the complex in vivo.
As expected, carrier molecules which have a higher selectivity for Gd3+ than for Zn2+
have less toxic complexes with a lower propensity for Gd3+ release. Other endogenous
ionic ligands such as citrate, phosphate, and bicarbonate can induce the release of Gd3+
via a different mechanism. These endogenous ligands can form ternary complexes with the
Gd3+-carrier complex, and subsequently, the ternary complex dissociates with the release
of free Gd3+. Specifically, in the presence of citrate, the dissociation rate of the Gd3+-carrier
complex is weak at physiological pH but increases with decreasing pH. Conversely, in the
presence of bicarbonate ions, the dissociation rate of the Gd3+-carrier complex increases
with higher pH values (7.5–8.5), while in the presence of phosphate ions, the dissociation
rate of the Gd3+-carrier complex is higher at pH 6 and lower at pH 8 [13].

In subjects with normal kidney function, the amount of released Gd3+ through the
transmetallation process seems to not be clinically relevant, involving about 3.2% of the
administered dose, with nearly complete elimination in 48 h. Conversely, in severe kidney
impairment, the amount of released Gd3+ is much higher (around 15% of the dose), with
only a slight reduction the following day (Figure 2).
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disease (CKD) patients (modified from [14]): with progressive kidney function impairment, there is an increasing GBCM
retainment with higher odds of transmetallation. Furthermore, transmetallation seems to be influenced by other conditions
such as the type of GBCM, the GBCM dose exposure, the hydration status, the phosphorus level, the acidosis status, and
the fraction of free ligand in GBCM. Specifically, higher doses of GBCM, metabolic acidosis, hyperphosphotemia, and
hypoidydration may increase the risk of transmetallation.

This scenario can lead to possible tissue deposition of Gd3+. As stated above, the
stability of the Gd3+-carrier complex is affected by pH, being lower at lower pH. Finally, the
amount of free carrier plays an important role in the eventual release of Gd3+. The presence
of free carriers can allow reuptake of Gd3+ and the formation of new complexes and thus
limits toxicity [14]. Finally, the dose and administration route of GBCM are important
factors in eventual Gd3+ release. The amount of free Gd3+ is a direct function of the dosage
of GBCM, and higher doses are related to a higher likelihood of transmetallation [15].
Specifically, the Royal College of Radiologists’ guidelines suggest avoiding large volumes
of GBCM (over 30 mL) to reduce exposure to Gd3+. Furthermore, intra-arterial GBCM
administration could theoretically be related to a higher incidence of kidney injury because
arterial administration potentially exposes the kidney to a higher concentration of GBCM.
Support for this hypothesis can be found in two retrospective studies [16,17], where
an incidence of AKI between 11 and 15% was noted with GBCM administered via the
arterial route.

3. Pathological Mechanism of Gadolinium Nephrotoxicity

The potential nephrotoxicity of Gd3+ seems related both to the physical properties of
GBCM such as viscosity and osmolality and to distribution of the Gd3+-carrier complex.

3.1. Physical Features: GBCM Viscosity and Osmolality

Osmolality and the viscosity of GBCM have been shown to impact the potential
nephrotoxicity [3,18,19]. GBCMs with higher osmolality and lower viscosity than iodinated
contrast media (I-CM) have proven to be nephrotoxic [20,21]. GBCMs, similar to I-CM, have
higher osmolality and viscosity compared to plasma (normal value 275–295 mOsm/kg [22]
and 1.16 to 1.33 Cp, respectively) [23]). In Table 1, we report the chemical-physical charac-
teristics of GBCM.

The kidney has a unique vascular structure, especially in the vasa recta that can
increase vascular resistance. In this setting, the increase in blood viscosity related to the
administration of any contrast media has an important impact on blood flow dynamics
and can lead to subsequent ischemic damage to the renal tubules (Figure 3) [21].
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Figure 3. Proposed mechanism of osmolality and viscosity damage in the kidney after GBCM
exposure.

Furthermore, specifically regarding osmolality, hyperosmotic solutions impair red
cell deformability and consequently worsen ischemic damage by leading to capillary
obstruction. Finally, the higher osmolality induces protracted vasoconstriction at the
cortico-medullary zone by impairment of nitric oxide production [24,25] (Figure 2). These
observations have been supported in experimental studies in a porcine model, where
exposure to GBCM results in more prominent necrosis of proximal tubules and the presence
of protein-filled tubules, a manifestation of proximal tubular functional impairment [20].

3.2. Direct Toxicity of Gd3+

Concerning Gd3+-carrier complex distribution, there is some experimental evidence
that these complexes concentrate in the kidney tissues, as reported in rat and dog models,
where a 5-fold increase in the concentration of the Gd3+ complex in the kidney has been
reported [26] compared with concentrations in other organs, such as the lung, heart, and
bones. This finding was confirmed in humans by an autopsy performed in a woman with
NSF [27]. The higher levels of the Gd3+-carrier complex in the kidney tissues may lead to
higher transmetallation and toxicity odds.

3.3. Comparison with I-CM

Although the exact mechanisms of kidney damage for GBCM and I-CM are not
completely elucidated, both contrast media seem to induce medullary hypoxia and to
develop direct toxicity to proximal tubule cells. Theoretically, I-CM damage could be
associated with higher viscosity. In contrast, GBCM damage could be related to its higher
osmolarity. However, other factors such as the contrast media dose or the hydration status
can modulate renal histological and clinical manifestations. Comparing to GBCM, I-CM
seems to also have a direct toxic effect on the renal tubular epithelium. Specifically, I-CM
tubular toxicity appears related to the stimulation of apoptosis pathways, the disruption of
mitochondrial activity, and the perturbation of endoplasmic reticulum activity [28].

4. The Role of Chronic Kidney Disease in Gd3+ Toxicity

In chronic kidney disease (CKD) patients, the stability of Gd3+-carrier complexes
is altered by changes in kidney function [13,14] for several reasons. Firstly, there is a
retention of Gd3+-carrier complexes as their excretion rates fall. Consequently, there is
a higher likelihood of Gd3+ release, and consequently, free Gd3+ is available in higher
concentrations and may be toxic to tissues. Gd3+-carrier complex retention and Gd3+
release are directly correlated with CKD stage [14], and this aspect partially could explain
the higher susceptibility of patients with advanced CKD to kidney damage (Figure 3) as
suggested by the clinical data summarized in Table 2.
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Table 2. Preclinical and clinical evidence of GBCM nephrotoxicity.

Report Study Design Aim Number of Subjects GFR (mL/min) GBCM Dose of Gd
(mmol/kg) Results

Preclinical studies

Leader et al. [29] Experimental
animal model

Evaluation of
nephrotoxicity in a

rabbit model
31 Not reported Gadopentetate (L, I) Not reported

Brushborder enzyme (LAP,
ALP, and GGT) and lysosomal
enzyme of tubular cell increase

after GBCM intravenous
administration.

Chien et al. [30] Experimental
animal model

Evaluation con 0.9%
saline hydration to

prevent kidney
failure in a rat model

12 Cr-Cl 2.5 Gadodiamide (L,
non-I) 5

High doses of GBCM impact
kidney function (reduction in

Cr-Cl 40%) and lead to
vacuolization of proximal

tubules. Hydration limits the
nephrotoxicity.

Brillet et al. [31] Experimental
animal model

Comparison
changing in kidney
function between

GBMC (M and I) and
GBCM (L and I)

GBMC (M, I): 10
GBCM (L, I): 10 Cr-Cl 1.6 Gadoterate (M, I)

Gadopentetate (L, I) Not reported

There is no change in S-Cr
with GBCM (M and L);

conversely, there is
a significant change in S-Cr

with GBCM (L and I).

Barbosa Pereira
et al. [32]

Experimental
animal model

Evaluation of
nephrotoxicity in a

rat model and
acetylcysteine

nephron protection

31

16 normal kidney
function and

13 with kidney
impairment

Gadoterate meglumine
(M, I) Not applicable

In kidney impairment rats,
GBCM shows a reduction of

GFR. Acetylcysteine seems to
reduce nephrotoxicity.

Elmstahl et al. [33] Experimental
animal model

Comparison between
GBCM and I-CM

group versus control
group,

intraarterial route

Case group 40
Control group 24

Decutered by
nephrectomy

Gadopentetate, (L, I)
gadodiamide (L, nonI) Not applicable GBCMs are more nephrotoxic

than I-CM.
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Table 2. Cont.

Report Study Design Aim Number of Subjects GFR (mL/min) GBCM Dose of Gd
(mmol/kg) Results

Preclinical studies

Elmstahl et al. [34] Experimental
animal model

Comparison between
GBCM and I-CM,
intraarterial route

64
Kidney impaired

(Partial
nephrectomy)

Gadopentetate (L, I)
Gadodiamide

(L, non-I)
3 mL/kg GBCMs induce more kidney

damage than I-CM.

Elmstahl et al. [20] Experimental
animal model

Kidney biopsy
description 152

Gadopentetate (L, I),
Gadobutrol (M, non-I)

Gadodiamide
(L, non-I)

Necrosis of proximal tubules
and glomerulus

Hemorrhage and congestion
of the cortex, medulla, and

glomerulus
Vacuolation of proximal

tubules
Protein-filled tubules in the

cortex and medulla

Kwak et al. [35] Experimental
animal model

Comparison of
apoptosis in medulla
and cortex between
the control, GBCM
group, and I-CM.

Control:3 GBCM: 9
I-CM: 9 Not reported Gadopentetate (L, I) Not reported

No difference in S-Cr between
GBCM and I-CM and

increase in apoptosis between
the control and GBCM

Clinical studies

Safi et al. [36] Retrospective
series

Comparison in the
AKI rate between

GBCM and I-CM in
cirrhotic patients

GBCM: 68
I-CM:84

S-Cr
0.88 Gadobytrol (M, non-I) Not reported

The rate of AKI (defined as an
increase of S-Cr of 0.5 mg/dL)

is 17.9% in I-CM
and 5.9% in GBCM.

Sambol et al. [17] Retrospettive
series

Comparison between
the GBCM group and
GBCM + I-CM group

153
GBCM group 59 43.3 Gadodiamide

(L, non-I) Non reported

Rate of AKI (defined as an
increase of S-Cr >0.5 mg/dL

within 48 h) is 25% in the
GBCM group.
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Table 2. Cont.

Report Study Design Aim Number of Subjects GFR (mL/min) GBCM Dose of Gd
(mmol/kg) Results

Clinical studies

Takahashi et al. [16] Retrospective
series

Incidence of AKI
after endovascular
intervention with

GBCM

68 With AKI 18.2
No Aki 25

Gadodiamide (L, non-I)
Gadoteridol (M, non-I) Not reported

The rate of AKI within 48 h
is 14.78%.

Pre-hydration limits
AKI incidence.

Ergun e al. [5] Retrospective
series

Evaluation of CIN
after GBCM 91 33

Gadopentetate (L, I),
Gadodiamide (L,

non-I), or Gadoterate
(M, I)

0.2 12% of patients had S-Cr
increase (≥0.5 mg/dL)

Briguori et al. [37] Retrospective
series

Comparison after
coronary arterial

procedure between
GBCM and I-CM

GBCM:32
I-CM: 32

Cr-Cl
GBCM 33
I-CM 30

Gadobutrol (M, non-I)
or Gadodiamide

(L-non-I)
<0.4

In the GBCM group, 28% of
patients had S-Cr increase
(≥0.5 mg/dL), while in the
I-CM group, only 6.5% had

S-Cr increase (≥0.5 mg/dL).

Sam et al. [38] Retrospective
series

Evaluation of CIN
after GBCM 195 38 Gadopentetate (L, I) 0.28 3.5% of patients had S-Cr

increase (>1 mg/dL).

Rieger et al. [39] Prospective
series

Evaluation of CIN
after GBCM 29 23 Gadopentetate (L, I) 0.34 6.7% of patients had S-Cr

increase (≥0.5 mg/dL).

Naito et al. [40] Randomized
trial

Comparison CIN
between non-I and I

GBCM
102 I: 94.1

Non-I: 90.5

Gadopentetate (L, I)
Gadodiamide (L,

non-I)
Not reported Significant S-Cystatin C

increase in non-I GBCM

Spasojevic-
Dimitrijeva et al.

[41]

Prospective
series

Comparison kidney
damage between
I-CM and GBCM

123 133 Gadopentetate (L, I) 0.20 Significant S-Cr and u-KIM1
increase after 24 h

Mawad et al. [42] prospective
series

Evaluation of urinary
marker of kidney

damage (IL-18, NAG,
and NGAL)

28 >60 mL/min Not reported Not reported
Significant IL-18 and NAG

increase, and
no increase in NGAL
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Table 2. Cont.

Report Study Design Aim Number of Subjects GFR (mL/min) GBCM Dose of Gd
(mmol/kg) Results

Clinical studies

Erley et al. [43] Randomized
trial

Comparison of CIN
between I-CM

and GBCM
21 31 Gadobutrol 0.57 50% of patients had over a

1.5-fold increase in basal S-Cr

Jurgensen et al. [44] Case report Description 1 55 Gadoteridol Not reported Cr-Cl descreased
(<20 mL/min) within 10 days.

Giozzet et al. [45] Case report Description 2 80 years: 40
84 years: 23

0.6
0.9

The need for dialysis, and
partial recovery of

kidney function

Thomsen et al. [46] Case report Description 1 20 Gadodiamide
(L, non-I) 0.14 Need for dialysis

Schenker et al. [47] Case report Description 1 15 Gadodiamide
(L, non-I) Not reported AKI

Gemery et al. [48] Case report Description 1 13 Gadoteridol (M, non-I) 0.44 S-Cr incresed to 9.3 mg/dL.

Akgun et al. [49] Case report Biopsy on human 1 1
Gadopentetate (L, I)

+
Gadodiamide

0.1
+

0.19

S-Cr increased to 3.4 mg/dL.
Tubular cell necrosis, tubular

cell degeneration, and marked
proliferation of tubular cells

together with mild interstitial
edema and

interstitial inflammation

Fujisaki et al. [50] Case report Description 1 20 Gadopentetate (L, I) 0.2 Need for dialysis

Badero et al. [51] Case report Description 1 38 2 times Gadobenate
(L, I) in 24 ore

Not reported.
Total volume of

98 cc
S-Cr increased to 7.4 mg/dL

GBCM: Gadolinium-based contrast media, I-CM: iodinated contrast media, L: linear, M: macrocyclic, I: ionic, non-I: Non-ionic, Cr-Cl: Clearance of Creatine, S-Cr: S-Creatine, AKI: acute kidney injury, CIN:
contrast-induced nephropathy, u-KIM1: kidney injury molecule-1, IL-18: Interleukin-18, NAG: N-acetyl-β-D-glucosaminidasem, NGAL: Neutrophil Gelatinase-Associated Lipocalin.
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Secondly, some conditions related to CKD make the kidney a potential target organ
for Gd3+ toxicity, such as systemic acidosis and hyperphosphatemia. Metabolic acidosis is
a common clinical finding during CKD progression and usually appears when eGFR falls
below 40 mL/min. In CKD, there is a progressive decline in ammonium excretion and a
concomitant increase in titratable acid in the urine, which primarily uses phosphate as a
buffer. However, the relationship between urine pH and CKD remains to be elucidated,
although some studies suggested a relationship between urine pH and acidosis status.
Specifically, acidosis status (higher renal acid load and lower serum bicarbonate) seems
to be associated with the increase of phosphate buffer [13] and the augmented phospha-
turia. Thus, there is increased urinary excretion of phosphate in CKD related to increasing
parathyroid hormone and acidosis status [52], and FGF23 levels [53]. Theoretically, this
condition could lead to the precipitation of Gd3+-PO3—4 salts in the tubular compartment.
As proposed in the pathogenetic mechanism of nephrogenic systemic fibrosis, insoluble
salts can be phagocytized by macrophages [54,55], with the concomitant activation of
inflammatory cells and release of cytokines and other pro-inflammatory mediators. Cur-
rently, there is no evidence regarding the possible role of gadolinium phosphate complexes
leading to kidney damage [56]. However, histological findings in a human case report [49]
showed multifocal acute tubulointerstitial changes with edema and mild mononuclear
inflammatory cell interstitial infiltrates, and the tubules with acute injury were focally
associated with luminal deposits of calcium-phosphate.

A potentially important mediator of toxicity is NLRP3, a component of a protein
complex family related to innate immunity known as inflammasomes. Gd3+ can compete
with extracellular calcium in the binding of the calcium-sensing receptor (CSR), which leads
to the activation of NLRP3. Active NLRP3 participates in caspase 1 activation, inducing
the release of IL1β and IL-18. Specifically, IL1β promotes fibrosis through direct fibroblast
stimulation, while IL-18 is related to proximal tubule cell pyroptosis, a catastrophic form
of apoptosis and necrosis related to cell lysis [56]. This hypothesis is supported by the
significant increase in urine IL-18 concentrations after exposure to GBCM [42].

Clinical Evidence

Only a few studies documented Gd3+ nephrotoxicity, as reported in Table 2. In these
reports, acute kidney injury (AKI) occurred in 12–50% of the cases, with the need for renal
replacement therapy in a negligible number of cases.

The development of AKI seems related to prior kidney impairment, the presence of
diabetes, exposure to a high dose of GBCM, and the use of linear GBCM complexes. In
Gd3+-induced kidney injury, pathological features include the presence of an acute tubu-
lointerstitial injury (characterized by multifocal changes with edema and mild mononuclear
inflammatory cell infiltrate in the interstitial space), necrotic tubular cells, and calcium
phosphate deposits in tubular lumens. All these findings seem congruent with the findings
described in animal models and support the concept of acute tubulointerstitial injury
associated with GBCM exposure.

Despite these reports, the infrequent occurrence of AKI after GBCM administration
calls into question whether Gd3+ nephrotoxicity occurs or if it is clinically significant
at least as measured by changes in serum creatinine, which can be very insensitive to
kidney damage. Furthermore, currently, exposure to GBCM is limited in CKD patients
with eGFR < 30 mL/min for the concomitant risk of NSF. This circumstance limits, in
our perception, the impact of GBCM on the development of AKI in higher risk class
patients and, subsequently, the opportunity to better define the risk of AKI in kidney
impairment. On the other hand, new biomarkers have emerged in the last ten years
to better detect kidney impairment and to allow for earlier detection of tubule damage.
For example, N-acetyl-β-D-glucosaminidase (NAG), kidney injury molecule-1 (KIM1),
Neutrophil Gelatinase-Associated Lipocalin (NGAL), Interleukin-18 (IL18), insulin-like
growth factor binding protein 7 (IGFBP7), and Tissue inhibitor of metalloprotease-2 (TIMP2)
have shown their potential utility in the early identification of tubular damage [57]. For
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Gd3+, the use of some of these biomarkers seems to confirm how GBCM can generate
tubular damage. Mawad et al. showed a significant increase in the urine levels of NAG and
IL18 3 h after exposure to GBCM [58], while Spasojević-Dimitrijeva et al. demonstrated an
increase of KIM1 24 h after GBCM administration [41].

Consequently, kidney damage related to Gd3+ may be subclinical (as defined by no
changes in serum creatinine) in most cases and manifests itself when there are other factors
such as severe kidney impairment, diabetes, high dose of GBCM, or use of linear GBCM.
Currently, no data are available on the consequences of subclinical kidney damage and the
prognostic significance of kidney damage biomarker elevations [58]. Despite the lack of
evidence about the prognostic value of subclinical kidney damage, we suggest a careful
strategy of GBCM administration in patients who have kidney impairment, not only to
avoid the risk of AKI but also to preserve the kidney from repeated subclinical damage
that may ultimately manifest itself.

5. Recommendations for GBCM Use

As reported by most important radiology guidelines, the use of GBCM is currently
recommended only when eGFR is over 30 mL/min, while in CKD patients with eGFR
under 30 mL/min or in AKI patients, GBCM can be administered only when no alternative
examination is available [59,60]. These guidelines for GBCM use may limit the incidence
of AKI, but they may not be enough to exclude or avoid Gd3+ subclinical damage to the
kidney. Avoiding this damage may be critical in patients who may be exposed to multiple
nephrotoxic insults. Clinicians should always assess the opportunities for use of other
imaging examinations or the use of MRI without GBCM. When the use of GBCM is abso-
lutely required, macrocyclic ionic compounds at the lowest possible dosage, avoiding the
arterial route of administration, should be preferred. Finally, consideration of prophylactic
measures such as adequate hydration status, correction of acidosis, and the treatment of
hyperphosphatemia should be undertaken. Scientific evidence for the benefit of these
prophylactic measures is only available for the administration of fluids. In an experimental
study on rats, the administration of fluids before GBCM exposure decreased subsequent
rises in serum creatinine [30]. Moreover, in a human study, Takahashi [16] described the
possible impact of hydration status on the development of AKI. Finally, in rare cases of
stage V CKD where MRI with GBCM is required and no other options are available, an
additional hemodialysis session has been suggested to prevent NSF only in those patients
who are already treated by hemodialysis. Despite the evidence of the efficient removal of
GBCM by hemodialysis treatment with 70% clearance [61,62], no studies have yet investi-
gated the utility of hemodialysis to prevent kidney damage. Peritoneal dialysis may also be
effective in GBCM removal as Murashima et al. showed 90% removal of GBMC after two
sessions of peritoneal dialysis over the first and second days after GBCM exposure [63].

To summarize, our advice is to use caution with CKD patients (especially when eGFR
is under 45 mL/min) and to evaluate strictly the indication of GBCM, weighing the risks
and advantages of MRI versus other imaging modalities. When no other imaging options
are available, the use of GBCM should be coupled with the use of prophylactic measures
as good hydration, avoidance of linear and nonionic GBCM, limitation of the dosage,
and perhaps consideration of acidosis and hyperphosphatemia correction. Finally, renal
replacement therapy should be suggested only in selective cases.

6. Conclusions

GBCMs are usually considered less nephrotoxic than I-CM because they have usually
lower viscosity and are generally used at significantly lower volumes. Despite that, Gd3+
can have potential nephrotoxicity especially in the presence of CKD. This may amplify
the potential aggressiveness of Gd3+, limiting Gd3+-carrier excretion and promoting the
right conditions for transmetallation. The determination as to which conditions can lead to
subclinical nephrotoxicity is critical.
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