Cardiovascular Magnetic Resonance Imaging in Ischemic Heart Disease

CME

Florian von Knobelsdorff-Brenkenhoff, MD\(^1,2\) and Jeanette Schulz-Menger, MD\(^1,2\)*

This article is accredited as a journal-based CME activity. If you wish to receive credit for this activity, please refer to the website: www.wileyhealthlearning.com

ACCREDITATION AND DESIGNATION STATEMENT

Blackwell Futura Media Services designates this journal-based CME activity for a maximum of 1 AMA PRA Category 1 Credit™. Physicians should only claim credit commensurate with the extent of their participation in the activity.

Blackwell Futura Media Services is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians.

EDUCATIONAL OBJECTIVES

Upon completion of this educational activity, participants will be better able to describe the various applications of CMR for the assessment of ischemic heart disease from a clinical perspective.

ACTIVITY DISCLOSURES

No commercial support has been accepted related to the development or publication of this activity.

Faculty Disclosures:

The following contributors have no conflicts of interest to disclose:

Editor-in-Chief: C. Leon Partain, MD, PhD

CME Editor: Scott B. Reeder, MD, PhD

CME Committee: Scott Nagle, MD, PhD, Pratik Mukherjee, MD, PhD, Shreyas Vasanawala, MD, PhD, Bonnie Joe, MD, PhD, Tim Leiner, MD, PhD, Sabine Weckbach, MD, PhD, Frank Korosec, PhD

Authors: Florian von Knobelsdorff-Brenkenhoff, MD, Jeanette Schulz-Menger, MD

This manuscript underwent peer review in line with the standards of editorial integrity and publication ethics maintained by *Journal of Magnetic Resonance Imaging*.

The peer reviewers have no relevant financial relationships. The peer review process for *Journal of Magnetic Resonance Imaging* is double-blinded. As such, the identities of the reviewers are not disclosed in line with the standard accepted practices of medical journal peer review.

Conflicts of interest have been identified and resolved in accordance with Blackwell Futura Media Services’s Policy on Activity Disclosure and Conflict of Interest. No relevant financial relationships exist for any individual in control of the content and therefore there were no conflicts to resolve.

INSTRUCTIONS ON RECEIVING CREDIT

For information on applicability and acceptance of CME credit for this activity, please consult your professional licensing board.

This activity is designed to be completed within an hour; physicians should claim only those credits that reflect the time actually spent in the activity. To successfully earn credit, participants must complete the activity during the valid credit period.

Follow these steps to earn credit:

- Log on to www.wileyhealthlearning.com
- Read the target audience, educational objectives, and activity disclosures.
- Read the article in print or online format.
- Reflect on the article.
- Access the CME Exam, and choose the best answer to each question.
- Complete the required evaluation component of the activity.

This activity will be available for CME credit for twelve months following its publication date. At that time, it will be reviewed and potentially updated and extended for an additional period.

\(^1\)Working Group on Cardiovascular Magnetic Resonance, Medical University Berlin, Experimental Clinical Research Center, a joint cooperation of the Charité and the Max-Delbrueck-Center, Berlin, Germany.

\(^2\)HELIOS Klinikum Berlin-Buch, Department of Cardiology and Nephrology, Berlin, Germany.

Contract grant sponsor: Else Kröner-Fresenius-Stiftung.

*Address reprint requests to: J.S.-M., Working Group on Cardiovascular Magnetic Resonance, Medical University Berlin, Charité Campus Buch, Experimental and Clinical Research Center and HELIOS Klinikum Berlin-Buch, Department of Cardiology and Nephrology, Schwanebecker Chaussee 50, 13125 Berlin, Germany. E-mail: jeanette.schulz-menger@charite.de Received March 22, 2011; Accepted December 9, 2011. DOI 10.1002/jmri.23580 View this article online at wileyonlinelibrary.com.

© 2012 Wiley Periodicals, Inc.
Ischemic heart disease is the most frequent etiology for cardiovascular morbidity and mortality. Early detection and accurate monitoring are essential to guide optimal patient treatment and assess the individual’s prognosis. In this regard, cardiovascular magnetic resonance (CMR), which entered the arena of noninvasive cardiovascular imaging over the past two decades, became a very important imaging modality, mainly due to its unique versatility. CMR has proven accuracy and is a robust technique for the assessment of myocardial function both at rest and during stress. It also allows stress perfusion analysis with high spatial and temporal resolution, and provides a means by which to differentiate tissue such as distinguishing between reversibly and irreversibly injured myocardium. In particular, the latter aspect is a unique benefit of CMR compared with other noninvasive imaging modalities such as echocardiography and nuclear medicine, and provides novel information concerning the presence, size, transmurality, and prognosis of myocardial infarction. This article is intended to provide the reader with an overview of the various applications of CMR for the assessment of ischemic heart disease from a clinical perspective.

Key Words: magnetic resonance; acute coronary syndrome; chronic coronary artery disease; stress test

Coronary Artery Disease (CAD), almost exclusively caused by atherosclerosis, is the leading cause of death in developed countries (1). From a clinical point of view, CAD can either present acutely during acute myocardial infarction (MI), or chronically, potentially ending up in ischemic cardiomyopathy with heart failure, arrhythmias and ischemic valvular disease. Despite general medical progress, there is concern that the predominance of cardiovascular mortality will even increase in future considering the growing prevalence of obesity and diabetes and poorly controlled additional risk factors for cardiovascular disease (2). Therefore, prevention, early detection and accurate characterization of CAD are strongly warranted to allow for effective prophylactic strategies and to optimally guide therapies, both for the individual’s sake, and for the cost burden of health care systems.

In particular the latter objectives—making the diagnosis of CAD and guiding therapeutic decisions—require excellent diagnostic and imaging tools provided to physicians in clinical medicine. **Cardiovascular magnetic resonance imaging** (CMR) is increasingly applied to examine patients with known or suspected CAD due to its unique diagnostic versatility (3–5). The work-up of CAD was the most frequently named primary indication for performing a CMR study in the EuroCMR registry—45.7% of 11,040 CMR studies (6). CMR provides cine movies of the heart, mostly based on steady-state free-precession acquisitions, with high blood-tissue contrast to allow for accurate cardiac chamber quantification and wall motion analysis both at rest and at stress (7). It enables myocardial perfusion studies to detect myocardial ischemia (8), and gives insights into the morphology of the myocardial tissue (9) (Table 1). The latter characteristic enables to noninvasively differentiate various causes of myocardial injury—like ischemia or inflammation—various stages of myocardial injury—like acute and chronic—and various severity grades of myocardial cell damage—like reversible and irreversible.

This review is intended to give an overview over the applications and role of CMR in the work-up of patients with known or suspected CAD. While the article focuses on the clinical point of view, some technical aspects are also mentioned, and future trends are touched.

Assessment of Myocardial Ischemia: CMR Stress Tests

A stress test is often indicated in symptomatic patients with typical or atypical chest pain or correlates suspected of being due to CAD and who have a low or intermediate cardiovascular risk profile, as well as in asymptomatic patients with high cardiovascular risk profiles, such as diabetics, or in patients with known CAD during follow-up (10). Exercise electrocardiography (ECG) is usually the first-level stress test, but this may not be appropriate for some patients (e.g., those with limited physical capacity) or nondiagnostic (e.g., due to not reaching the target heart rate). Therefore, stress tests that include noninvasive imaging are frequently used. Left ventricular wall-motion abnormalities induced by stress can be assessed both by using CMR and transthoracic echocardiography (TTE). Furthermore, myocardial perfusion analysis during stress is possible if using CMR or single photon emission computed tomography (SPECT).

All methods have strengths and weaknesses, and it would be beyond the scope of the present article to provide a comprehensive review of all available methods. To date, there are no studies that have compared all approaches to identify the test modality with the best diagnostic accuracy. However, in general when assessing and comparing the diagnostic accuracy of various procedures, it should be kept in mind that the underlying gold standards often differ between studies: although usually invasive coronary angiography is selected for comparison, the threshold of a relevant coronary artery stenosis varies in published studies. Furthermore, the significance of the different target parameters of the various diagnostic tests—anatomy of stenosis versus wall motion abnormality versus perfusion defect—must be taken into account when comparing diagnostic procedures. For example, there might be a high-grade stenosis detected by invasive coronary angiography, but no perfusion defect or wall motion abnormality by CMR stress tests. Such a constellation would, therefore, reduce the sensitivity of CMR tests when defining angiography as the gold standard. Rather, the techniques have to be interpreted as complementary, with CMR expressing the hemodynamic relevance of an anatomic stenosis (11). Similarly, CMR stress perfusion might reveal a subendocardial perfusion defect, whereas coronary angiography excludes any stenosis of the epicardial coronary arteries. This might be interpreted as reflecting a low
specificity of the CMR test when defining angiography as the gold standard. However, the perfusion defect might in fact be present, and caused by disturbances of the microcirculation. This might provide additional insight into the underlying pathology, such as syndrome x, diabetes, systemic hypertension, or hypertrophic cardiomyopathy (12–14). Therefore, when choosing and evaluating a stress test, the clinician should take the underlying pathophysiology into account.

Cardiac Wall Motion Analysis During Dobutamine Stress

The concept and protocol of dobutamine CMR is similar to dobutamine TTE, and was first introduced approximately 2 decades ago (7,15,16). Left ventricular function is assessed using steady-state free precession (SSFP) cine imaging at rest, and subsequently during increasing dosages of intravenously administered dobutamine—a synthetic beta-1-selective catecholamine agonist—until an age-predicted heart rate response is obtained. If the target heart rate is not reached with the highest dobutamine dosage (usually 40 μg/kg/min), additional fractions of atropine (maximal dose 1mg)—an inhibitor of the vagal tone—is administered intravenously to further stimulate the heart rate. Images are acquired at least in three short axes of the left ventricle, usually with the addition of one or more long axis views as recommended in concordance with the 17-segment model proposed by the American Heart Association (AHA) (17). In the presence of a relevant coronary stenosis, the stress promotes an oxygen supply/demand mismatch that leads to left ventricular wall motion abnormalities (Fig. 1).

However, compared with dobutamine TTE, CMR usually acquires cardiac images only every 3 min. In contrast to the continuous echocardiographic real-time imaging. Furthermore, any analysis of ST-segment alterations on the ECG indicating ischemia are not feasible during CMR due to distortion of the ECG signal caused by magnetohydrodynamic effects. Nevertheless, significant heart rhythm disorders are

![Table 1 CMR Modalities Suitable for the Work-up of Ischemic Heart Disease](image)

<table>
<thead>
<tr>
<th>Example</th>
<th>Cine imaging (at rest and stress)</th>
<th>T2-weighted imaging</th>
<th>First-pass perfusion imaging (at rest and stress)</th>
<th>Late gadolinium enhancement</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMR modality</td>
<td>Assessment of cardiac function</td>
<td>Detection of myocardial edema</td>
<td>Assessment of myocardial blood flow</td>
<td>Identification of irreversible myocardial injury</td>
</tr>
<tr>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target parameters</td>
<td>Left ventricular ejection fraction, volumes and mass</td>
<td>Differentiation of acute and chronic infarction</td>
<td>Perfusion defect/Ischemia</td>
<td>Infarct size</td>
</tr>
<tr>
<td></td>
<td>Wall motion abnormalities</td>
<td>Area at risk</td>
<td>Microvascular obstruction</td>
<td>Viability</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Myocardial salvage</td>
<td></td>
<td>Microvascular obstruction</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Thrombus</td>
</tr>
</tbody>
</table>

Figure 1. Stress CMR: Wall motion analysis during dobutamine infusion in a 62-year-old woman with three-vessel coronary artery disease and chest pain. The upper panel shows standard short axis views (basal, midventricular, and apical; from left to right), in diastole (top), and systole (bottom) at rest. There is no wall motion abnormality at rest. The lower part of the figure shows the same short axis views during dobutamine infusion at peak heart rate. There is a discrete hypokinesis in the inferior wall indicating a stenosis of the right coronary artery. During subsequent coronary angiography, a stent was implanted into a 75% stenosis of that vessel.
detectable even in the presence of a distorted ECG curve, which makes continuous ECG monitoring mandatory and useful. Under consideration of such safety measures, dobutamine CMR can be performed as safely as dobutamine TTE, with low major adverse event rates of 0.05% to 0.5% (6,18,19), which is comparable to adverse event reports of 0.2% with dobutamine TTE (20).

Overall, the diagnostic accuracy of dobutamine CMR is reported to be superior to dobutamine TTE in cases where there is a reduced ultrasound window. Nagel et al compared the ability to detect a coronary stenosis ≥50% as assessed by coronary angiography using dobutamine CMR or dobutamine TTE. They reported a sensitivity of 86% versus 74%, specificity of 86% versus 70%, and diagnostic accuracy of 86% versus 73% (21). Further results underlining the satisfactory diagnostic nature of dobutamine CMR came from Hundley et al, who reported a sensitivity/specificity of 83%/83% (22) for detecting a coronary artery stenosis ≥50% as assessed by angiography, and from a meta-analysis by Nandalur et al, who found a sensitivity/specificity of 83%/86%, respectively, to detect a coronary artery stenosis ≥50% as assessed by angiography (23). The superiority of CMR compared with TTE is mainly explained by improvements in image quality (21, 22). Whereas TTE is dependent on adequate acoustic windows and the proficiency of the sonographers, CMR images can be acquired with good and reproducible image quality independent of the patient’s physique and the examiner. The use of standardized procedures for positioning of slices leads to reproducible results and ensures that each slice position can be accurately reproduced at different stress levels. Furthermore, the endocardial border can be clearly delineated because of the high blood/tissue contrast (21). These aspects are particularly important in those patients with wall motion abnormalities even at rest, in whom wall motion interpretation can be very difficult (24). The standardized approach and high image quality likely underlie the documented low interobserver variability and high reproducibility of dobutamine CMR (25, 26).

Recent data indicate that the sensitivity of dobutamine CMR for the diagnosis of CAD may be further improved by the addition of first-pass myocardial perfusion imaging to wall motion assessments during peak-dose dobutamine, particularly in patients with left ventricular hypertrophy, in whom the accuracy of dobutamine CMR alone may be reduced (27–29). Furthermore, there are attempts to increase the diagnostic accuracy of dobutamine CMR to detect early evidence of ischemia by supplementing the visual wall motion analysis with quantitative methods like myocardial tissue tagging (30–32). However, because of the need for time-consuming postprocessing, these promising techniques have not yet entered clinical routine. Finally, although most of these diagnostic accuracy data were obtained at 1.5 Tesla (T) field strength, they have also been confirmed for the 3T field strength (33).

While dobutamine CMR to detect myocardial ischemia has important short-term implications to guide revascularization strategies, it has also strong prognostic impact. Hundley et al. found a significant association between dobutamine-induced wall motion abnormalities by CMR and MI, as well as cardiac death (34). Similarly, a normal dobutamine CMR study has been shown to be associated with a very low cardiovascular event rate during the subsequent years, as reported by Kuipers et al for a 2-year follow-up (35), by Jahnke et al for a 3-year follow-up (36) and recently by Kelle et al for a 6-year follow-up (37).

Myocardial Perfusion Analysis During Vasodilator Stress

Myocardial perfusion imaging by CMR was introduced approximately 2 decades ago (38). Compared with SPECT, which uses a radioisotope that is actively taken up by the myocytes to depict myocardial perfusion, CMR analyzes the first pass of an extracellular contrast agent within the myocardium. Whereas the stress protocol used for both methods is similar, CMR offers the benefit of superior spatial and temporal resolution, and SPECT is associated with the negative effects of exposure to ionizing radiation (8, 39).

Myocardial perfusion can be assessed using CMR by acquiring a series of ECG-gated T1-weighted images (using gradient echo, gradient echo-planar, or SSFP acquisitions) (40) with every one to two heart beats during the first pass of an intravenously administered bolus of extravascular contrast media, like gadolinium, during one breath-hold. This is done during simultaneous infusion of a vasodilator, which causes myocardial hyperemia. The predominant vasodilator is adenosine, although dipyridamol is sometimes used. Recently, regadenoson, which is administered as a single bolus and has similar effects on myocardial perfusion as adenosine (41), has been FDA approved for radionuclide perfusion studies. The hyperemic flow is compromised in myocardial segments that are supplied by a significantly stenosed coronary artery because of the drop of coronary perfusion pressure downstream of the coronary stenosis. Alternatively, microvascular dysfunction can lead to an impairment of perfusion reserve despite the absence of any significant stenosis of the epicardial coronary arteries, as mentioned earlier (12–14). Segments with a perfusion defect in relation to the hyperemic myocardium will, therefore, be identifiable by a lower signal intensity on the CMR image (Fig. 2) (8). Images are commonly acquired in at least three short axes of the left ventricle in concordance with the AHA 16-segment model (17); one additional long axis view of the apical segment can be helpful. Early results from studies visualizing the whole heart in three-dimensional (3D) during the stress test are promising (42).

The diagnostic accuracy of stress perfusion CMR has been investigated in several studies. Ishida et al compared the ability to detect ≥70% coronary artery stenosis (assessed by angiography) with dipyridamol stress perfusion CMR or SPECT. They found CMR to be superior, with a sensitivity specificity of 94%/88%
versus SPECT with 82%/71%, respectively, on a patient level (43). A randomized multi-center multi-vendor trial (MR-IMPACT), demonstrated that adenosine stress perfusion CMR was equivalent to SPECT at detecting coronary artery stenosis ≥50% when assessed by invasive coronary angiography (44). A meta-analysis reported a sensitivity/specificity of 91%/81% for the detection of a coronary artery stenosis ≥50% (23).

However, when interpreting these results concerning the diagnostic accuracy of CMR stress perfusion, the reader should keep in mind that it is problematic to use single cut-offs like ≥50% or ≥70% lumen narrowing to define the relevance of a coronary artery stenosis. Apart from variations in stenosis degree depending on the applied quantification technique (45), it is known from pathophysiologic studies that coronary stenosis severity as assessed by coronary angiography does not always correlate with its functional significance in terms of myocardial perfusion (11). Therefore, pressure wire derived fractional flow reserve (FFR) calculation of a coronary stenosis is regarded as the more adequate gold standard to evaluate the diagnostic capability of stress perfusion CMR (46). Using such an approach, Watkins et al found a sensitivity and specificity of stress perfusion CMR for the detection of functionally significant CAD of 91% and 94%, respectively (47); and Lockie et al, who performed FFR and stress perfusion CMR at 3T, recently reported a sensitivity and specificity of 82% and 94% (48).

Most previous studies reporting the diagnostic accuracy of stress perfusion CMR excluded patients with coronary artery bypass grafts in whom there may be altered myocardial contrast kinetics owing to more complex myocardial perfusion and different distances of the contrast bolus through different bypasses and native coronary vessels. Two recent studies demonstrated that even for patients after surgical revascularization, stress perfusion CMR yields good diagnostic accuracy for the detection and localization of significant stenoses, although the sensitivity is reduced compared with patients without coronary bypass (49,50).

Stress perfusion CMR is regarded as a safe method (6,51). Image analysis can be performed either visually—which is predominantly done in clinical practice, or quantitatively by calculating the rate of myocardial signal change (upslope) during contrast medium first pass—which is predominantly done in research (52,53). Both approaches achieve satisfactory observer dependency, and it is still controversial whether any approach is superior (48,54).

The step from 1.5T to 3T leads to a significant increase in myocardial signal during the first pass of contrast media (55), which leads to improved image quality and fewer extended dark rim artifacts. However, whether these benefits can also be translated into superior diagnostic accuracy is still under debate (56,57). Similarly, promising efforts to increase temporal and spatial resolution by integrating modern acceleration methods during image reconstruction can be conducted (58). However, evidence of their impact on diagnostic accuracy remains to be determined.

In addition to its important short-term use to guide revascularization strategies, stress perfusion CMR...
also has a strong prognostic impact. Steel et al. reported that a perfusion defect on CMR was associated with a three-fold increase in risk of cardiac death or acute MI in patients referred with symptoms of myocardial ischemia during a median follow-up of 17 months (59). Ingkanisorn et al demonstrated in patients with chest pain, who had MI excluded by blood tests and nondiagnostic ECG, that an adenosine CMR examination predicted with high sensitivity and specificity which patients had significant CAD during 1-year follow-up (60). Furthermore, Jahnke et al reported that a normal perfusion scan in patients with suspected CAD was predictive of a 99% chance of a 3-year event-free survival (36).

Each stress perfusion CMR is usually supplemented by late gadolinium enhancement (LGE) imaging, which delineates even small or subendocardial infarcted myocardium with high accuracy and robustness (9,61,62). Klem et al showed that a combined perfusion and infarction CMR examination is superior to stress perfusion CMR alone in the diagnosis of CAD (63). Furthermore, both a perfusion defect and the presence of LGE were independently associated with a more than three-fold increase in risk for cardiac death/MI, underscoring the complementary value of LGE imaging and stress perfusion CMR. Finally, even in the absence of any stress-induced perfusion defect during CMR testing, the detection of LGE is associated with a 13-fold increase in the risk of cardiac death/MI for the patient (59).

Detection and Sizing of Infarcted Myocardium Using LGE Imaging

First attempts to visualize myocardial infarction by contrast enhanced CMR date back to the 1980s (66,67). In the mid and late 1990s, techniques using contrast-enhanced CMR for infarction detection were significantly improved (68,69), leading to image acquisitions specifically designed to achieve maximum contrast between infarcted and noninfarcted myocardium (70). The technique involves T1-weighted inversion-recovery imaging approximately 10 min after intravenous administration of gadolinium contrast. With appropriate settings, normal myocardium appears black or nulled, whereas nonviable regions appear bright or hyperenhanced. This pulse sequence increases regional differences in myocardial image intensities from approximately 50% to more than 500%, thereby significantly improving the visualization of hyperenhanced regions (Fig. 3). Phase-sensitive inversion recovery acquisitions can also be used, which are less dependent on the correct inversion time and thus may offer a more robust approach particularly for less experienced centers (71). Images are usually acquired during repeated breath holds both in long axis orientation and in a stack of short axis slices covering the left ventricle, to enable reporting in concordance with the AHA 17-segment model (17). Currently, navigator-based 3D image acquisitions (71), as well as free-breathing techniques are under investigation for clinical use (72,73).

The mechanism of LGE relies upon two assumptions: (a) The tissue volume in normal myocardium is predominately intracellular, because myocytes are densely packed; (b) Gadolinium chelates are extracellular agents that cannot cross intact sarcolemmal membranes. Therefore, the gadolinium distribution volume is small and tissue concentration is low in normal myocardium, whereas cell membrane rupture in acute necrosis allows gadolinium to diffuse into myocytes leading to increased gadolinium concentration, shortened T1 relaxation, and thus hyperenhancement. In the chronic setting, scar tissue replaces necrotic tissue and the interstitial space is expanded, which again results in increased gadolinium concentration and hyperenhancement (9).

Animal models demonstrated that LGE agrees very closely with histopathology regarding the size and shape of infarcted myocardium (61). In a landmark study, Wagner et al compared LGE imaging, SPECT and histopathology in 12 dogs with MI and found that even very small infarcts, as well as exclusively subendocardial infarctions, were detected by LGE with a sensitivity comparable to histopathology and clearly superior compared with nuclear medicine (61,74). Klein et al demonstrated that LGE is superior in detecting scar compared with wall thickness and wall thickening compared with positron emission tomography (PET) as the gold standard (75).

The detection of injury by LGE is specific for irreversible myocardial damage, but is not specific for MI. However, its pattern differs between ischemic and nonischemic heart disease. Therefore, it provides
important information regarding the etiology of myocardial damage, which is crucial for the clinician. According to the wavefront phenomenon (76), ischemic lesions mostly affect the subendocardial layer, while the extension to the subepicardial portion is variable, and usually their distribution corresponds to the coronary territories. In contrast, nonischemic lesions—such as in inflammatory heart disease or cardiomyopathies—are predominantly located in the subepicardial or middle portion of the myocardium with a more patchy distribution that is independent of the coronary territories (Fig. 4) (77,78).

Making the diagnosis of MI is not always straightforward in clinical cardiology. Blood markers of myocardial injury are elevated for only a few days after an acute event. Q waves on the ECG are quite unspecific. Wall motion abnormalities on TTE may not occur unless the infarcted region exceeds 20–50% of the myocardial wall; and SPECT defects may not be apparent until >10 g of tissue is infarcted (79). Conversely,
nonischemic conditions, such as cardiomyopathies or inflammatory heart disease, can also lead to wall motion abnormalities, loss of viable myocardium, or elevated blood markers (77). As such, in situations where the diagnosis of MI is difficult, CMR is regarded to be very helpful. LGE imaging detects the presence of MI lesions with higher accuracy than any other noninvasive diagnostic modality. Wagner et al studied 91 patients with known or suspected CAD by CMR and SPECT. They found that all segments with nearly transmural infarction, as defined by contrast-enhanced CMR, were detected by SPECT as well. However, of the 181 segments with subendocardial infarction, 85 were not detected by SPECT. On a per patient basis, 13% of the individuals with subendocardial infarcts visible by CMR would have been missed by SPECT (61). Furthermore, an international multi-center trial confirmed a low observer dependency for MI detection by LGE imaging (62). Kwong et al reported that the prevalence of unrecognized MI by LGE was 76% higher than by ECG, which has enormous implications for patient management, e.g., starting medication for secondary prophylaxis (80). Whether the presence of intramyocardial fat forms a substrate for arrhythmias or sudden cardiac death remains to be investigated. From a practical perspective, this approach is already useful in differentiating true LGE lesions from signal enhancement that may arise due to the presence of fat.

Detection of Acute Myocardial Infarction Using T2-Weighted Imaging

The documentation or exclusion of acute CAD is one of the most frequent and important tasks in clinical cardiology. Due to the need for fast decision making that mostly includes active and invasive interventions, CMR is usually not integrated into the workflow. However, several clinical constellations exist where the diagnosis remains unclear. Recently, evidence is accumulating that CMR can provide unique information in chest pain syndromes that can aid in the detection and differential diagnosis of acute MI, guide clinical decision making, and improve risk stratification after an event (89,90). In addition to LGE imaging, which delineates irreversibly injured myocardium, T2-weighted imaging has gained importance in this setting to improve tissue characterization (91,92).

Myocardial edema, increased myocardial water content, is a feature of many forms of acute myocardial injury that are associated with inflammation, such as ischemia or myocarditis. T2-weighted CMR imaging is sensitive to regional or global increases in myocardial water (65). The first report demonstrating the linear correlation between T2 relaxation time assessed by CMR and myocardial water content came from Higgins et al. who examined acutely infarcted myocardium (93). Using a spin echo acquisition, T2-weighted image contrast is achieved by imaging with a long

Figure 4. Determination of the type of myocardial injury by LGE imaging. Various examples depicted as a four-chamber view.

- **a:** Acute MI with small apical LGE with central microvascular obstruction (black arrows) in a patient with symptoms of MI but normal coronary angiography.
- **b:** Midwall LGE in the septal wall indicating dilated cardiomyopathy (white arrow).
- **c:** Patchy subepicardial and intramural LGE indicating inflammatory heart disease (white arrow).
- **d:** No LGE in a patient with Takotsubo cardiomyopathy.
repetition time compared with tissue T1 (to reduce the T1 contribution to image contrast) and a long echo time in the range of the value of T2 in the tissue of interest. Tissues with longer T2 will have a higher signal in a T2-weighted acquisition. With the echo time set to 60–64 ms (typically used in clinical T2-weighted CMR imaging), free water becomes the most significant contributor to the T2 signal intensity in muscle tissue. In practice, myocardial segments with myocardial edema appear bright (Fig. 5e,f).

Recent advances in T2-weighted CMR could address many previous problems with low signal-to-noise ratio, coil-related signal-inhomogeneities and inconsistent image quality. Mostly, a breath-hold, black-blood, triple-inversion recovery turbo spin echo sequence is applied, although attempts using SSFP acquisitions have been performed (94,95). Similar to LGE, the pattern of distribution of bright zones on T2-weighted images may help to indicate the etiology of myocardial injury. In general, tissue alterations caused by ischemia lead to increased signal intensity in the subendocardium or—which is more common—transmurally in segments corresponding to the supplying coronary artery territories. In contrast, myocardial edema provoked by inflammatory/nonischemic heart disease tends to be located in the midventricular or subepicardial portion of the myocardium and appears independent from any supplying coronary artery territories (77,96).

Abdel-Aty et al recently showed in an animal model with temporary coronary artery occlusion that T2-weighted imaging of edema detects acute ischemic myocyte injury at a very early stage, even before the onset of irreversible damage occurs (97). These data support the potential use of this technique to evaluate cases of possible acute coronary syndrome using CMR. Furthermore, CMR offers a complementary approach that integrates T2-weighted imaging showing reversible myocardial injury—the so-called “area-at-risk”—and LGE imaging showing irreversible myocardial damage. Up to now, the assessment of that area at risk required the injection of a radioactive tracer into the occluded coronary artery before revascularization. Instead, CMR provides a more attractive option, because it enables a retrospective determination of the area at risk, as both T2 and LGE characteristics are detectable even days after the acute event (89,98).

The combination of both sequences enables quantification of the extent of the salvaged area after revascularization, which is represented by the difference from the area at risk and LGE, and is an important parameter for clinical decision making and research (99). Francone et al demonstrated that in patients with ST-elevation MI treated with primary percutaneous coronary intervention, the time to reperfusion determines the extent of reversible and irreversible myocardial injury. In particular, salvaged myocardium was markedly reduced when reperfusion occurred >90 min after coronary occlusion (100). Furthermore, the combination of T2-weighted imaging with LGE imaging has been proven to be helpful in differentiating acute from chronic MI: While chronic MI is represented by LGE alone, acute MI is characterized both by high signal intensity in T2-weighted images and by LGE in the infarcted region (101). This is reported to be useful in the setting of delayed presenta-

tions after acute MI, in which cardiac markers may have returned to normal, whereas abnormalities on T2-weighted CMR can persist for several weeks (98,102). Another application of the combined approach is the management of patients presenting to the emergency department with acute chest pain, negative cardiac biomarkers, and no ECG changes indicative of acute ischemia. Cury et al found that T2-weighted imaging in addition to LGE and cine imaging led to an increase in specificity, positive predictive value and overall accuracy from 84% to 96%, 55% to 85%, and 84% to 93%, for the detection of acute MI. Therefore, CMR provided incremental value above traditional risk stratification, with the changes detected by CMR occurring before the rise in cardiac blood markers (64).

Assessment of Infarct Related Complications

Ventricular thrombus is a frequent complication of ischemic heart disease and increases the risk of stroke. In clinical cardiology, the diagnosis is usually made by echocardiography, even though the detection of ventricular thrombus is limited, in particular if thin thrombus coats the ventricular endocardium or if thrombus is located in the apex. CMR facilitates the detection of ventricular thrombus both by SSFP cine imaging with excellent blood-tissue contrast, as well as with the use of LGE imaging. The basic underlying principle for thrombus detection with LGE is that thrombi are avascular, and have essentially no gadolinium uptake. Thus, thrombus can be identified as a nonenhancing defect surrounded by bright ventricular blood and contrast-enhanced myocardium (Figs. 3c,f, 6b,c) (103). In patients with ischemic cardiac disease, LGE identified left ventricular thrombus in substantially more patients than cine CMR or TTE (104). Sri-chai et al compared LGE, TTE, and transesophageal echocardiography to detect left ventricular thrombus in patients who underwent surgical left ventricular aneurysmectomy. In this study LGE exhibited a higher sensitivity and specificity (88%/99%) compared with TTE (23%/96%) and transesophageal echocardiography (40%/96%) (105). In addition, CMR is a valuable tool to monitor the course of a ventricular thrombus during anticoagulation therapy due to the high reproducibility of slice positioning (Fig. 3c,d). However, it should be noted that the reported high diagnostic performance of CMR to identify thrombus only holds true for the ventricles, and not for the left atrium or left atrial appendage, because in this regard CMR is still limited by inadequate spatial and temporal resolution and the non–real-time acquisition. Thus, this indication would still require standard monitoring by means of transesophageal echocardiography.

The detection of postinfarction ventricular wall perforation is also facilitated by CMR due to its three-dimensional approach, such that even complex morphological changes can be detected. (Fig. 6a–c). Finally, CMR including LGE imaging can help to attribute unusual ventricular morphology as detected by other imaging modalities to postinfarction remodeling (Fig. 6d–f), which has a significant impact on patient management.
Assessment of Myocardial Viability

From a clinical perspective, myocardial viability suggests that the systolic function of an infarcted region will recover after revascularization. Thus, viability testing should predict the myocardial response to revascularization. There are several approaches to assess myocardial viability by CMR, although LGE imaging is the predominant method:

Myocardial Wall Thickness

As chronic scar formation is associated with thinned myocardium, cut-offs for end diastolic myocardial
wall thickness as assessed by CMR cine imaging were proposed to assess myocardial viability. Whereas, for instance, the negative predictive accuracy of a cut-off of 5.5 mm was satisfactory with 90%, its positive predictive accuracy was only 62% (106). This unfavorable diagnostic performance is explained by the fact that simply looking at wall thickness by CMR does not consider its morphology. Hence, this approach does not discriminate between viable and nonviable proportions of the ventricular wall. Furthermore, this approach does not define the thickness of the remaining viable rim, which is the most important factor in determining whether a segment will recover function.

Low-Dose Dobutamine

As with low-dose dobutamine TTE, low-dose dobutamine CMR has been introduced to assess myocardial viability. In this case, repeated cardiac cine images are acquired at rest and at 5 and 10 μg/kg/min dobutamine infusion to assess left ventricular contractile reserve. Despite achieving satisfactory diagnostic accuracy—Baer et al reported a sensitivity in predicting recovery of left ventricular function after revascularization of 89% and a specificity of 94% on a patient-basis (107)—this approach was widely replaced by LGE imaging (see next point) due to its speed and robustness as well as its higher accuracy, especially in more severe cardiac dysfunction. Nevertheless, it is recommended to add low-dose dobutamine CMR to LGE imaging in those LGE studies that remain inconclusive (see next point) (7,108). Furthermore, low-dose dobutamine is an adequate approach in patients with contraindications to Gadolinium.

LGE Imaging

LGE imaging has been demonstrated to be superior to detect myocardial scarring compared with wall thickness and wall thickening on cine imaging (75). Therefore, LGE imaging is generally regarded as a better predictor for myocardial recovery compared with the assessment of wall thickness and thickening alone. Furthermore, LGE imaging does not only evaluate the mere presence or absence of myocardial scarring, but also allows the determination of the transmural extent of a myocardial lesion within a segment (Fig. 3a,b) (75). In a landmark study, Kim et al

Figure 6. Postinfarction complications: Upper panel: A 66-year-old woman who suffered from one episode of severe chest pain. Coronary angiography was reported to be normal. Thus, the patient was referred to undergo CMR to rule out myocarditis. a: Three-chamber view with SSFP acquisition demonstrating an abnormal inferolateral wall (white arrow). b,c: Three-chamber and short axis view with LGE technique showing inferolateral wall rupture with thrombus (white arrow), providing evidence of previous MI. Lower panel: A 50-year-old woman needed resuscitation due to ventricular arrhythmia. d: Cardiac catheterization ruled out coronary artery stenosis, but reported hypertrochecularization of the inferolateral wall (black arrow) suggested a form of cardiomyopathy as the underlying cause of sudden cardiac death. e: CMR with SSFP acquisition confirmed abnormal inferolateral wall morphology (white arrow). f: LGE imaging demonstrated transmural infarction-type scar as the underlying cause (white arrow). Thus, the patient was treated as postinfarction patient instead of having another type of cardiomyopathy.
assessed the transmurality of LGE 41 patients with ventricular dysfunction before and approximately 3 months after surgical or percutaneous revascularization. In an analysis of all 804 dysfunctional segments, the likelihood of improvement in regional contractility after revascularization decreased progressively as the transmural extent of hyperenhancement before revascularization increased. For instance, contractility increased in 256 of 329 segments (78%) with no hyperenhancement before revascularization, but in only 1 of 58 segments with hyperenhancement of more than 75 percent of tissue. The percentage of the left ventricle that was both dysfunctional and not hyperenhanced before revascularization was strongly related to the degree of improvement in the global mean wall-motion score and the ejection fraction after revascularization (109). Similar results were reported by Selvanayagam et al, who studied 52 patients before and 6 months after coronary bypass surgery (110). Preoperatively, 611 segments (21%) had abnormal regional function, whereas 421 segments (14%) showed evidence of hyperenhancement. At 6 months after revascularization, 57% (343 of 611) of dysfunctional segments improved contraction by at least one grade. When all preoperative dysfunctional segments were analyzed, there was a strong correlation between the transmural extent of hyperenhancement and the recovery in regional function at 6 months. However, both studies also identified a grey zone, where functional improvement following revascularization was uncertain, if scar transmurality was between 1 and 50%. In these cases, the additional performance of a CMR study with low-dose dobutamine to assess inotropic contractility of the myocardial wall has been shown to improve clinical accuracy (7,108,111). Glaeckeaite et al recently reported that low dose dobutamine is even superior to LGE imaging as a predictor of segmental recovery when applied specifically to segments with an LGE from 26% to 75%. Similarly, Kirschbaum et al reported that quantification of the extent of segmental wall thickening of the viable rim during low dose dobutamine is a superior predictor of functional recovery than LGE transmurality (112).

In addition, the extent of nonenhanced myocardium contributes to the recovery of myocardial function. Ichikawa et al reported that measurement of thickness of nonenhanced myocardium, compared with measurement of percent transmural enhancement, had even better diagnostic accuracy for predicting improved systolic wall thickening in dysfunctional segments in 18 patients following acute MI. They showed that the optimal threshold of the thickness of nonenhanced myocardium for predicting preserved systolic wall thickening in the chronic state was 3.9 mm (113). Similarly Glaeckeaite reported a cut-off of 4 mm that produced the best sensitivities and specificities for predicting segmental recovery in 46 patients 6 months following revascularization (114).

Risk Stratification in Ischemic Heart Disease

CMR provides several parameters that offer an estimate of cardiac remodeling and prognosis on the individual patient level following an acute MI. This information is of eminent clinical relevance to determine the optimal therapeutic pathway for each subject to omit over- and under-treatment.

The mere presence of scar resulting from MI conferred nearly a six-fold increased risk for major cardiac events—even if only approximately 1% of the left ventricle was affected (80,115). Infarct size is a stronger predictor of outcome than left ventricular ejection fraction and volumes (116). Kwon et al found that in patients with ischemic cardiomyopathy and severely reduced ejection fraction, a greater extent of myocardial scar, delineated by LGE, was associated with increased mortality (117). Boye et al recently reported that in particular the degree of infarct transmurality identified a subgroup with increased risk for life-threatening arrhythmias and cardiac death in patients with chronic MI (118). In addition, the composition of LGE, likely representing the admixture of viable and nonviable myocardium within an infarcted region, may influence the prognosis and the incidence of ventricular arrhythmia (119). Thus, in the future LGE imaging may improve risk stratification following MI, and help to identify those subjects who would benefit most from prophylactic implantation of an internal cardioverter defibrillator. This therapy is currently mainly determined by the severity of reduction in systolic function, but a significant percentage of implantations occur in patients in whom the device is never called upon (120). However, in order for LGE to be fully incorporated as a criterion of risk stratification, a robust technique to accurately define the extent of scar and grey area is needed (121).

Eitel et al showed that the so-called myocardial salvage index (calculated as the area at risk (assessed by T2-weighted imaging) minus the infarct size (assessed by LGE imaging) divided by the area at risk) predicts the outcome in acute reperfused ST-elevation MI. They found a significantly lower mortality and major adverse cardiovascular events rate after 6 months for the group with a smaller myocardial salvage index than the median of the sample (122). T2-weighted imaging seems to add prognostic information even in patients with non-ST-elevation MI. In a study by Raman et al, patients with edema showed a higher risk of a cardiovascular event or death within 6 months compared with those without edema (123). Furthermore, CMR has been proposed for the assessment of myocardial hemorrhage, which appears as a hypointense core within the hyperintense edema on T2-weighted imaging (Fig. 7a). In a study by Ganame et al, myocardial hemorrhage was an independent predictor of adverse left ventricular remodeling at four months follow-up, independent of the initial infarct size (124). Similarly, Mather et al reported that reperfusion hemorrhage following acute MI was associated with larger infarct size, diminished myocardial salvage, lower left ventricular ejection fraction, adverse ventricular remodeling and pronounced ECG features indicating higher arrhythmic risk (125).

Another prognostic parameter that can be determined by CMR is the proof of microvascular obstruction (MVO), or no-reflow despite reperfusion of the
epicardial coronary arteries. MVO can be summarized as reperfusion injury and is the consequence of clogging of small myocardial arterioles with embolic debris, acute inflammation, platelet aggregation and vasospasm (126). The presence of MVO is a marker for unfavorable cardiac remodeling and prognosis. Assessed by CMR, MVO either appears as a hypointense area during first-pass perfusion at rest, as a hypointense core during early gadolinium enhancement imaging at 1 to 2 min after contrast agent injection, or as a hypointense core within the bright region of an infarction during LGE imaging (Figs. 4a, 5c,d,g,h, 7b, c). It is still a continuing debate which technique is the best to assess MVO by CMR. Perfusion imaging was found to be more sensitive for the detection of MVO compared with LGE, however is hampered by incomplete left ventricular coverage, low signal-to-noise ratio, and low spatial resolution. Experimental studies have demonstrated that the spatial extent as well as location of early MVO closely correlate with histopathological analyses. LGE-CMR underestimates the extent of MVO as compared to perfusion imaging and might miss small regions of MVO due to slow penetration of contrast into the MVO region over time. On the other hand, late MVO seems to be a more important prognostic indicator compared with early MVO. Hence, ideally the imaging protocols should combine perfusion imaging, early imaging and LGE to overcome the limitations of each method (126). Anyway, the fact remains that CMR-driven detection of MVO has an additional prognostic impact beyond the use of left ventricular ejection fraction. Hence, the use of MVO itself should be explored in the clinical arena. De Waha et al reported that the presence and extent of late MVO were independently associated with a composite end-point comprising death, nonfatal myocardial re-infarction and congestive heart failure (127). Nijveldt et al demonstrated in patients after revascularized acute MI that the presence or absence of MVO proved a more powerful predictor of global and regional functional recovery than other characteristics such as TIMI flow grade, myocardial blush grade, ST-segment resolution and even infarct size and transmural extent as assessed by CMR (128). Similarly, Hombach et al found microvascular obstruction to be a highly sensitive and reliable tool to detect morphologic and functional sequelae of acute MI that predict adverse cardiac remodeling and the occurrence of major adverse cardiovascular events (129).

Discrimination of Differential Diagnosis of Acute Ischemic Heart Disease

As mentioned previously, both LGE and T2-weighted imaging provide pathologic patterns that can indicate the etiology—ischemic versus nonischemic—of an acute event or an active inflammatory reaction, respectively. This capability has strong clinical relevance, as a nontrivial proportion of up to 10% of patients initially diagnosed with ST-elevation MI, and 32% of patients presenting with acute coronary syndrome, turn out to have normal coronary arteries at invasive coronary angiography (9). CMR helps to find the correct diagnosis, which may be Takotsubo cardiomyopathy with reversible wall motion abnormalities, edema extending over one coronary artery territory, and the absence of LGE; or myocarditis with subepicardial and intramural LGE lesions and global or patchy edema; or myocardial infarction despite normal coronary arteries, with subendocardial LGE and edema fitting to MI, possibly indicating spontaneous intracoronary thrombolysis (Fig. 4) (77). In a registry of 1335 MI patients undergoing coronary angiography, Larson et al reported that 14% had no culprit artery and 9.5% did not have significant CAD. In the group without a clear culprit artery, CMR established that the most common diagnoses were myocarditis (31%), Takotsubo cardiomyopathy (31%), and MI without an angiographic lesion (29%) (130).

![Figure 7](image_url)

Figure 7. CMR examination of a 59-year-old man, who presented with acute ST-elevation MI due to early stent thrombosis in the left anterior descending artery and underwent revascularization. **a:** T2-weighted imaging reveals a large area of edema including a dark central region thought to represent hemorrhage (white arrows). **b:** SSFP cine imaging early after contrast media administration depicts the large extent of microvascular obstruction, visible as a dark band (white arrows). **c:** LGE imaging delineates the size of MI with microvascular obstruction (white arrows).
CHALLENGES OF CMR IN ISCHEMIC HEART DISEASE

Despite the enormous technological progress of CMR and the numerous clinical data that support its application, there are still many challenges to be solved to increase the robustness and accuracy of this method and to promote its widespread use. In the following text, some examples regarding the use of CMR in ischemic heart disease are discussed:

Dobutamine Stress CMR

With the occurrence of any new wall motion abnormality during dobutamine infusion, the adverse event rate of this stress test increases. Therefore, real-time detection of the onset of cardiac dysfunction and immediate discontinuation of the dobutamine infusion is warranted to increase patients’ safety. Hence, the implementation of high resolution real-time CMR imaging during dobutamine stress would be desirable.

Perfusion stress CMR

Using the most frequently applied approach, three short axes that are planned at rest and imaged during stress perfusion are currently the best available LV coverage in clinical routine. However, the faster cardiac movement due to stress-induced tachycardia and the dyspnea-related altered breath hold position sometimes lead to a shift of the three short axes, so that the left ventricular myocardium is not represented completely any more. In addition, respiratory motion, which occurs at least once during first-pass perfusion acquisition, and ECG trigger problems during deep respiratory motion further promote constraints of the image quality. Finally, the presence of dark rim artifacts is still a relevant clinical problem, particularly in centers with less experience. Thus, many technical solutions are needed to implement stress perfusion CMR as a routine stress test in clinical cardiology, e.g., three-dimensional approaches with high spatial resolution and local registration to allow for free breathing.

LGE Imaging

Although LGE imaging is a robust technique, the delineation of thin subendocardial LGE from the bright contrast enhanced blood pool is sometimes difficult. Therefore, techniques that facilitate differentiation are needed. Furthermore, patients with ischemic heart disease and heart failure often struggle with the repeated breath holdings during LGE imaging, particularly if it is performed in the end of a long lasting examination. Robust sequences, which allow free breathing, but still provide the resolution of standard acquisitions, are needed. Finally, the quantification of LGE is still under debate. Currently, the preferred method for LGE quantification is to planimeter the infarct visually using experienced readers, who can carefully segment myocardial borders and account for artifacts and areas with intermediate image intensity. In contrast, semiautomatic methods, which use image thresholds of 2 to 7 standard deviations above the mean of remote normal myocardial intensity or a threshold value of 50% of the maximum intensity within the infarct (full width half maximum), are not as objective as one might think. Most require user input to distinguish artifacts, to trace the myocardial borders, and to define remote myocardium, leading to significant observer dependency (9,131). Furthermore, the latency between contrast media administration and image acquisition, and the type of contrast media, influence the extent of LGE (132).

T2-weighted Imaging

Whereas the method gives significant insights into myocardial injury, challenges regarding robustness and resolution of T2-weighted imaging still have to be improved, and lead to a potential impairment of the image quality, e.g., with high heart rates and thin myocardium. Furthermore, image acquisition times (and thus the duration of breath holding) is long, causing respiratory artifacts in many patients (133). Therefore, new techniques are needed to strengthen the role of T2-weighted imaging and to fully exploit its unique potential, as T2-weighted imaging is currently the only noninvasive method to assess the presence and extent of myocardial edema, and has, therefore, a significant clinical need and impact. Another approach is to directly measure the T2 relaxation time on a pixel basis by T2-mapping. Initial reports with this technique are promising, but further validation is required in future studies (134).

FUTURE PERSPECTIVES OF CMR IN ISCHEMIC HEART DISEASE

Many innovations over previous years have entered clinical routine, and many more ideas are looming on the (pre-)clinical horizon. However, when developing new methods and assessing new inventions, the proof of concept should always be their robust application in a clinical setting and their accuracy to detect diseases, including their potential to influence patients’ outcome. It would be beyond the scope of the present article to cover all promising developments in the field of CMR to assess patients with CAD. Hence, just a small selection of these current developments is presented to illustrate this active field of research.

Blood oxygen level dependent (BOLD) imaging is based on the principle that decreased oxyhemoglobin and increased deoxyhemoglobin tissue content result in lower T2* or T2 values, that lead to corresponding signal enhancement on T2* or T2-weighted imaging (135,136). While at 1.5T this technique suffered from low signal-to-noise ration, this technique might
benefit from higher field strength. Further technical developments may enhance this promising method in the future, and with BOLD an additional tissue marker—complementary to the T1 and T2-weighted images described above—may arise (137,138).

Coronary angiography by CMR to visualize coronary artery stenosis is still inferior to computed tomography regarding its quantitative clinical usage, predominantly due to its methodological complexity and constraints of temporal and spatial resolution. High temporal resolution is needed to obtain motion-free images of the coronary arteries, which show rapid movement during the cardiac cycle. In addition, high spatial resolution is required to adequately visualize small coronary artery segments, ranging in diameter from a few millimeters proximally to submillimeter size more distally. Nevertheless, recent studies applying new technologies and higher main magnetic field strength have shown promising results (139). Kato et al reported that noncontrast-enhanced whole-heart CMR coronary angiography at 1.5T can noninvasively detect significant CAD—as assessed by coronary angiography—with high sensitivity (88%), moderate specificity (72%) and a satisfactory negative predictive value of 88% in a multi-center study (140). A recent comparison between CMR coronary angiography using a 32 channel coil with a 3T scanner, and 64-slice computed tomography angiography, showed that both methods similarly identify significant coronary stenosis in patients with suspected or known CAD scheduled for coronary angiography (141).

However, the isolated detection of any coronary lumen loss neither provides information regarding the hemodynamic relevance—as outlined above in the CMR perfusion chapter—nor does it predict the site where a coronary event is imminent. Therefore, it seems to be more important to exploit the potential of CMR to characterize the morphology and function of the coronary wall—incorporating measures of plaque composition, vessel wall inflammation, endothelial function, distensibility, or blood flow (42). These topics are currently fields of very active research. For instance, Hays et al described a noninvasive approach to directly visualize endothelial-dependent coronary artery dilation and increased blood flow in healthy subjects, and their absence in CAD patients by combining phase contrast flow measurements at 3T with handgrip exercise (143). Ibrahim et al analyzed the coronary artery wall in patients following acute MI using contrast-enhanced CMR. They detected changes in the extent and intensity of coronary contrast enhancement with the potential to visualize inflammatory activity in atherosclerosis associated with acute coronary syndrome (144). Lin et al obtained MR coronary angiographies in healthy and diabetic humans and observed significant differences in the coronary distensibility index (145). Regarding molecular imaging, Makowski et al established an elastin-specific MR contrast agent to noninvasively quantify and characterize plaque burden in a mouse model of atherosclerosis (146). Despite these encouraging results, restrictions in spatial and temporal resolution still limit robust assessment of the coronary arteries, and must be overcome to fully exploit the potential of CMR for coronary evaluation.

CMR at ultrahigh field strength is thought to enable higher spatial and temporal resolution and faster imaging techniques. These benefits promise to improve tissue characterization in ischemic heart disease by giving more detailed insight into the texture and function of infarcted myocardium and the surrounding tissue. One theoretical future application of this technique could involve the detection of preclinical microinfarcts as precursors of overt infarcts. However, increasing the field strength leads to enormous technological challenges. Therefore, CMR at 7T is at present only applied in preclinical studies. Initial reports have demonstrated that cine imaging can be realized in a robust and accurate mode at 7T, with visualization of the right coronary artery demonstrated (147,148). However, to date, there have been no studies exploring this technique in patients with ischemic heart disease, or with infarct imaging at 7T in vivo. Hence, further developments in hard- and software are required to evaluate the clinical impact of ultrahigh field CMR in ischemic heart disease. Nevertheless, recent ex vivo animal studies of infarcted hearts at 7T demonstrated detailed, nearly cellular, insights for detection of fibrosis after MI (121). Especially this area can only be improved and developed based on a close collaboration between physicists, engineers and clinicians.

Diffusion tensor CMR has been introduced as a method to resolve microstructural fiber anatomy of the heart. Associations between tissue integrity and both fiber architecture and ventricular function after MI have been reported (149). Hence, this method may be a valuable tool in the future to analyze interactions between myocardial tissue morphology and function. However, hardware limitations of most clinical scanners constitute a barrier to progress at present. Hence, modern gradient systems and advances in radiofrequency technology, multi-element arrays, navigators, and parallel acquisition schemes are required to promote clinical translation of this technique (150).

CONCLUSION

CMR has become an important diagnostic element during the clinical work-up of patients with known or suspected ischemic heart disease. Hence, ischemic heart disease has become the most frequent indication to perform a CMR study. CMR provides information about cardiac dimensions, function, and myocardial perfusion with high robustness and accuracy. Furthermore, CMR gives unique insights into myocardial tissue alterations during acute and chronic ischemic heart disease. This noninvasive and radiation-free combined approach of functional and morphologic cardiac assessment with CMR provides unique characteristics and strengths compared with other imaging modalities. CMR allows the early detection of ischemic heart disease, and differentiation of nonischemic disorders, improves patient monitoring during the course of disease, provides additional information
for risk stratification and guidance of patient therapy. However, further developments are required to promote the widespread use of CMR as a routine clinical tool, including improved technical robustness, facilitated work-flow of a routine CMR study, and improved CMR training of clinicians.

ACKNOWLEDGMENT

We thank Dr. Victoria Claydon for carefully editing the manuscript.

REFERENCES

