Diagnostic electrocardiograms (ECG) are required to ensure patient safety during minimal invasive interventions and cardiac stress testings. The ECG is corrupted by several other signals when performing these interventions under magnetic resonance (MR) guidance which makes it impossible to use the ECG as a diagnostic tool in MR guided interventions. The interfering signal that is caused by the static magnetic field of the MR scanner - namely due the magnetohydrodynamic (MHD) effect - is investigated within this work. The MHD effect is measured regarding different aspects like the strength and orientation of the static magnetic field as well as the patient’s position and heart rate.

2. Materials and methods

2.1. Theory of the MHD effect

Blood plasma, which makes up about 60% of the total blood volume contains approximately 10% solutes such as Na⁺, Cl⁻ or HCO₃⁻ ions. These ions are moving inside the vessels where they experience a force due to the presence of the external magnetic field - namely the MR scanner’s B₀ field. This force is known as Lorentz force \(\vec{F} \):

\[
\vec{F} \propto (\vec{v} \times \vec{B}_0)
\]

and depends on the magnitude and orientation of the blood flow velocity \(\vec{v} \) with respect to the \(\vec{B}_0 \) field. This force causes the ions to move perpendicular to the direction of the blood flow and perpendicular to the magnetic B₀ field. The ions accumulate near the vessel’s wall leading to an potential difference across the vessel that may be expressed as:

\[
V \propto \int_0^l \vec{v} \times \vec{B}_0 \, dl
\]

where \(l \) is the diameter of the vessel. This is the so called MHD effect. Besides these basic assumptions, additional parameters as the density, conductivity, and viscosity of blood, the Hartmann number or the aortic blood pressure have to be considered to estimate the induced voltage across the vessel [3] whereas additional transfer functions are used to estimate the body surface potentials [4].
The MHD effect leads to a disturbance of the ECG signal when measuring it in the MR scanner. This makes it impossible to use the measured ECG for cardiac diagnostics. However, the MHD signal can be used as an alternative approach in cardiac gating of peripheral target areas in MR angiography [5] or in the estimation of blood flow volume [6].

2.2. ECG recording hardware

To obtain maximum information from the ECG measurements under the presence of the B_0 field, a 12-lead ECG recorder was used. Since there is no MR safe 12-lead ECG recorder available, a standard 12-lead Holter ECG (CardioMem CM3000-12, GETEMED, Germany) was modified. Standard, non-magnetic ECG Electrodes were used during the experiments. All ECGs were recorded using 12-leads with a sampling rate of 1024 Hz, a resolution of 12 Bit, an input voltage range of ±6 mV and an analog bandwidth ranging from 0.05 Hz to 100 Hz.

2.3. MR scanners

To evaluate the influence of the magnetic field strength and the orientation of the field, the ECGs were recorded in three MR scanners:

- 1 T Philips Panorama High Field Open MRI
- 1.5 T Siemens Magnetom Vision
- 3 T Philips Achieva TX MRI

Fig. 1 shows the direction of the B_0 field and the blood flow inside the primary blood vessels. The magnetic B_0 field of the 1 T scanner is aligned along the vertical axis whereas the patient lies along the horizontal axis (Fig. 1a). This means that most parts of the aorta - the aorta ascendens, arcus aortae and aorta descendens - have a perpendicular component with respect to the B_0 field. This fact might increase the MHD effect. The horizontally aligned B_0 fields of the more commonly used 1.5 T and 3 T scanners have fewer perpendicular components with respect to the aorta, mainly with the arcus aortae (Fig. 1b).

MR imaging was switched off during the recording of the ECGs. Hence, MR-unsafe hardware as mentioned in section 2.2 can be used. Regarding the measured ECG signals, the deactivation of MR imaging restricts the artifacts to the MHD effect.

2.4. Patients and measurement protocol

Measurements were made on two healthy, male volunteers at the age of 24 (Patient P1) and 28 (Patient P2).

To investigate different effects for the different scanner types and field strengths, the ECGs were recorded for at least 40 s in prone/supine position (for the 1 T scanner), in head-first/feet-first position (1.5 T and 3 T scanner) with normal breathing/breath hold for the following situations:

- Patient outside the MR scanner as reference
- Patient’s chest in the center of the MR scanner’s bore
- Different heart rates during stress testing

2.5. ECG signal filtering

To remove baseline wandering, an elliptical high-pass filter of fifth order with cutoff frequency 0.8 Hz and 60 dB stop band attenuation has been applied to the recorded ECG signals. To improve QRS detection, the MHD artifacts were filtered using a high-pass filter with cutoff frequency 10 Hz. 50 Hz power line interferences were not observed within the MR scanner room.

2.6. MHD signal extraction

To estimate the MHD signal’s shape, the differential signal between the ECGs outside and inside the scanner is calculated. Episodes of constant heart rate are used. A mean value over ten consecutive heart beats is calculated for the 12 leads of the ECGs measured outside (ECG_{OUT}) and inside the scanner (ECG_{IN}). The mean MHD voltage signal MHD is then defined as $MHD = ECG_{IN} - ECG_{OUT}$.

3. Results

ECG signal properties: Resting heart rates measured outside and inside the scanner ranged from 51 bpm to 72 bpm. An example for an ECG signal measured outside the scanner as reference is shown in Fig. 3a). The R-wave of all measurements shown in Figs. 2-5 is positioned at 150 ms. The results presented in Figs. 2-5 show the mean value of ten consecutive heart beats.

Dependency of MR scanner and patient position: Fig. 2 summarizes the ECG measurements inside the three
ECG recordings for heart rates ranging from 110 bpm to 130 bpm in the 1 T scanner system in supine position after exercising. Measurements at different heart rates were performed within the MR scanners. For the 1.5 T and 3 T scanner, ECGs were recorded in supine and prone position in the measurement for the 1.5 T and 3 T scanner due to its deviating field orientation as shown in Fig. 2g) vs. Fig. 2i) and Fig. 2h) vs. Fig. 2j), respectively.

4. Discussion

Dependency of MR scanner: As expected from Eq. 2, the measured MHD voltage is directly related to the absolute magnitude of the B_0 field. This effect can be observed in the measurement for the 1.5 T and 3 T MR scanner as shown in Fig. 2g) vs. Fig. 2i) and Fig. 2h) vs. Fig. 2j), respectively.

The 1 T scanner has to be dissociated from the 1.5 T and 3 T (horizontal aligned B_0 field) and 1 T (vertical aligned B_0 field) scanner.
described in section 2.3. Despite its relatively low field strength, the amplitude of the MHD signal observed in the 1 T is in the order of those measured in the 1.5 T and 3 T scanners. This agrees with the theory given in section 2.3.

For the 1.5 T and 3 T scanners, the MHD voltage is minimal in leads V2 and V3 which agrees with previous measurements [8]. For the 1 T scanner, it is minimal in lead III.

Patient position dependence: For the MR scanners with an horizontal alignment of the B0 field (1.5 T and 3 T system), the induced MHD voltage depends on whether the patient is placed head first or feet first inside the MR scanner. Results are shown in Fig. 2g) vs. Fig. 2h) and Fig. 2i) vs. Fig. 2j), respectively.

For the 1 T scanner system which has an vertically aligned B0 field as shown in Fig. 1a), the change of the patient’s position from supine to prone position leads to changes in the measured MHD signal. This is shown in Fig. 2k) and Fig. 2l).

MHD signal at different heart rates: The MHD signal changes with varying heart rate. An increasing heart rate leads to an increased amplitude of the MHD signal as well as a temporal compression. This relation can be explained by the effect that the QT interval is shortened as well as a temporal compression. This relation can be explained by the effect that the QT interval is shortened.

Interpatient MHD signals: There is an obvious visual similarity between the shape of the MHD signal of the two patients. However, due to the different anatomy and electrode placement in different patients and measurements, significant variations of the MHD signal have to be expected. Hence, a patient specific filtering of the corrupted ECG seems to be the most promising way.

Spectrogram: The frequencies of the ECGs taken outside and inside the MR scanner have overlapping frequency ranges in the T-wave segment. As shown in Figs. 5c)-d), both signals are in the frequency range between 0 Hz and 10 Hz within this segment. This precludes the usage of frequency based filters since those methods would eliminate the diagnostic information contained in the T-wave and ST-segment.

5. **Conclusion**

The MHD effect mainly depends on the orientation of the B0 field with respect to the patient whereas the amplitude of the B0 field is of secondary importance. The elimination of the MHD artifact using frequency based filtering is not possible due to the overlapping frequency ranges of the ECG and the MHD signal. One interesting aspect is the similarity of the MHD signal at varying heart rates in intrapatient measurements. Future work will investigate this relation more in detail. Additional measurements, e.g. blood pressure, might be necessary to cope with the MHD induced signals.

Acknowledgement

This research was financially supported by the Federal Ministry of Education and Research (BMBF, Germany) in context of the Innoprofile project ‘INKA’. The ECG recording hardware and additional software tools were kindly provided by GETEMED AG, Germany.

References

Address for correspondence:
Johannes Krug
Chair for Healthcare Telematics and Medical Engineering
Universitaetsplatz 2 // 39106 Magdeburg // Germany
johannes.krug@ovgu.de