
Magn Reson Med . 2019;81:25–46. wileyonlinelibrary.com/journal/mrm © 2018 International Society for Magnetic Resonance in Medicine |  25

Received: 9 August 2017 | Revised: 1 May 2018 | Accepted: 21 May 2018

DOI: 10.1002/mrm.27403

R E V I E W

Magnetic resonance fingerprinting: a technical review

Bhairav Bipin Mehta1,* | Simone Coppo1,* | Debra Frances McGivney1 |  
Jesse Ian Hamilton2 | Yong Chen1 | Yun Jiang1 | Dan Ma1 |  
Nicole Seiberlich2 | Vikas Gulani1,2 | Mark Alan Griswold1,2 

1Department of Radiology, Case Western Reserve Universityand University Hospitals Cleveland Medical Center, Cleveland, Ohio 
2Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 

Correspondence
Mark Alan Griswold, Ph. D., Case Western 
Reserve University, 11100 Euclid Ave ‐ 
Bolwell B121, Cleveland, OH 44106, USA. 
Email: mark.griswold@case.edu
Twitter: @mrimark

Funding information
National Cancer Institute, Grant/Award 
Number: R01CA208236; National Heart, 
Lung, and Blood Institute, Grant/Award 
Number: R01HL094557; National Science 
Foundation, Grant/Award Number: 
CAREER 1553441; Siemens Healthineers; 
National Institute of Biomedical Imaging 
and Bioengineering, Grant/Award Number: 
R01EB016728 and R01EB017219; National 
Institute of Diabetes and Digestive and 
Kidney Diseases, Grant/Award Number: 
R01DK098503

Multiparametric quantitative imaging is gaining increasing interest due to its wide-
spread advantages in clinical applications. Magnetic resonance fingerprinting is a 
recently introduced approach of fast multiparametric quantitative imaging. In this 
article, magnetic resonance fingerprinting acquisition, dictionary generation, recon-
struction, and validation are reviewed.
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1 |  INTRODUCTION

In recent years, there has been increased interest in quantita-
tive MRI methods to measure physical properties such as T1, 
T2, and diffusion coefficients. Quantitative methods provide 
the advantage of reduced subjectivity, which could aid in 
diagnosis, tissue characterization, follow‐up, and therapeu-
tic assessment. Moreover, characterization of pathologies is 
often dependent not only on a single tissue property, but on 
a combination of properties evaluated together.1-4 Ideally, all 
property maps should be registered to one another.

Most quantitative MRI approaches allow for the measure-
ment of tissue properties but are relatively slow and generally 
provide only a single property at a time. Approaches to quan-
tify a single property involve measuring signal changes after 
varying a single acquisition parameter, keeping others con-
stant. Within each image or data point used to obtain the map 

of interest, the signal is kept constant to avoid errors in prop-
erty estimation due to deleterious effects from undesired fluc-
tuations. Thus, the magnetization must recover to the same 
initial state for every cycle, to limit the signal variation caused 
by changing the acquisition parameter. This requirement of 
retaining the same conditions is one of the primary reasons 
for the relatively long scan time of these approaches. Faster 
alternative techniques have been developed, including some 
of the commonly used techniques,5-9 but these are often af-
fected by other undesired tissue or system properties10-12 such 
as B1, diffusion, and magnetization transfer, thereby resulting 
in errors for the estimation of target property. To improve this 
situation, techniques have been proposed to acquire multiple 
tissue proprieties at the same time.13-15 However, none of 
these methods has achieved widespread clinical adoption.

Magnetic resonance fingerprinting (MRF)16 is a frame-
work (Figure 1) in which a different formalism is used to 
achieve the goal of fast multiproperty quantitative imaging. *Bhairav Bipin Mehta and Simone Coppo contributed equally to this work. 
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In this framework, instead of sequentially acquiring infor-
mation of desired multiple tissue properties, the idea is to 
simultaneously probe for information on all of the desired 
tissue properties with the goal of improving SNR and scan 
efficiency of the entire experiment. The acquisition is made 
sensitive to multiple tissue properties by simultaneously 
varying multiple sequence parameters throughout the acqui-
sition, providing fingerprint‐like signal evolutions for combi-
nations of desired tissue properties. Separately, a dictionary 
of simulated signal time courses is generated for anticipated 
combinations of tissue properties using an appropriate signal 
model. Pattern recognition is used to compare each voxel’s 
fingerprint with the dictionary to identify the best matching 
entry from the dictionary for each voxel. The property values 
associated with the best dictionary match are assigned as the 
measured properties for that voxel. It has been demonstrated 
that the matching process allows identification of tissue prop-
erties even in the presence of undersampling artifacts, allow-
ing for high acceleration factors to be used for individual time 
points, enabling high efficiency17,18 in the MRF acquisition. 
Magnetic resonance fingerprinting therefore presents a rela-
tively generalized framework with the potential to measure a 
wide variety of tissue properties. The initial applications of 
MRF focused on T1, T2, B0, and proton density mapping.16 
However, recent work has shown the feasibility to mea-
sure B1+, T2

*, perfusion,19,20 and hemodynamic21,22 related 
properties. The relatively open framework of MRF presents 
many options for each component of the acquisition and 

reconstruction process. In this review, we will cover each of 
the primary components of an MRF method: acquisition, dic-
tionary generation, and reconstruction.

2 |  ACQUISITION

The MRF framework does not impose constraints on the  
sequence design so long as the primary goals of conducting 
an efficient (based on SNR and scan time) experiment and 
ensuring the desired tissue properties are separable enough 
to be extracted with sufficient precision. Because of this flex-
ibility, nearly any sequence can be used in an MRF acquisi-
tion, and multiple sequence types can be combined in a single 
acquisition. The design of the sequence determines the acqui-
sition efficiency, the properties that can be estimated and their  
accuracy, and the corresponding clinical application.

2.1 | General approaches

2.1.1 | Balanced SSFP
In the proof‐of‐principle implementation of MRF by Ma et 
al,16 an inversion recovery–prepared balanced SSFP (bSSFP) 
based approach (Figure 2) was used, as the bSSFP sequence 
has been extensively studied.23-31 The properties of retain-
ing spin history, high SNR, high scan efficiency, and high 
sensitivity to T1, T2, and off‐resonance frequencies make 

F I G U R E  1  Overview of the magnetic resonance fingerprinting (MRF) framework. Data are acquired such that different tissues have unique 
fingerprints. The dictionary contains a discretized subset of all anticipated tissue signals generated through simulations. The acquired fingerprints 
are compared with the simulated fingerprints from the dictionary (pattern recognition) to identify the underlying tissue in each voxel. From the 
identified dictionary entry, tissue properties are assigned to each voxel to generate the property maps

Property maps



   | 27BIPIN MEHTA et al.

bSSFP highly suitable for MRF. Results from 2 different flip 
angle (FA) and TR variations were presented. For k‐space 
sampling, a variable density spiral trajectory was used with 
uniform rotation (360º/48) at each time point (Figure 3 and 
Figure S1), which allows the undersampling artifacts to have 
sufficient spatio‐temporal incoherence.

The accuracy of bSSFP‐MRF was compared with 
DESPOT1 and DESPOT22 in phantoms with reference mea-
surements performed using spin‐echo (SE) based techniques. 
The results obtained from MRF were in good agreement with 
the SE measurements and the associated concordance correla-
tion coefficients were higher compared with the DESPOT ap-
proach. The T1 and T2 values of brain tissues obtained using 
bSSFP‐MRF in vivo were shown to be in agreement with lit-
erature values (Table 1). Additionally, the MRF efficiency in 
phantoms was superior to the DESPOT efficiency by an aver-
age factor of 1.87 (DESPOT1) and 1.85 (DESPOT2).

The bSSFP sequence presents many favorable proper-
ties, one of which is the ability to refocus spins of different 
off‐resonance frequencies at TE = TR/2 in the steady state.27 
However, the use of transient state, variable FA, and variable 
TR in MRF may lead to a loss of this SE‐like refocusing char-
acteristic. The work presented by Assländer et al33 aimed to 
reduce the sensitivity of the bSSFP‐MRF acquisition to static 

magnetic field inhomogeneities. They proposed to estimate 
TE and TR patterns based on the variable FA pattern, which 
maintains the SE‐like refocusing characteristic of bSSFP.

Conceptually, their first condition on FA ensures the 
magnetization crosses the x‐z plane at every RF pulse, 
without which there cannot be refocusing. To estimate 
the TE and TR patterns, an initial condition of TE0 =0 is 
assumed and TE and TR were updated by the following 
equations:

where bandwidth is the desired bSSFP‐based bandwidth 
in radians/second. Equation 1 exploits the property of 
the RF pulse to retain the Euclidean distance between the 
tips of the magnetization vectors of different isochromats. 
Additionally, this neglects relaxation and uses the small 
dispersion angle approximation.33 This algorithm provides 
a series of TRs that will produce a SE‐like refocusing at 
the corresponding set of TEs for a given set of FA series 
(Figure 4 and Figure S2).

(1)TEi+1 = (TRi−TEi) ∙
sin(�i)

sin(�i+1)

(2)max
{

TEi+1,
(
TRi−TEi

)}
=

�

bandwidth

F I G U R E  2  Schematic of the balanced SSFP (bSSFP) MRF acquisition sequence zoomed in at 3 different scales. For each time point, the flip 
angle (FA) and TR value varies following the pattern shown by the graphs at the top right (FA in orange and TR in blue) as illustrated by a zoomed‐
in schematic inset on the top left. In the schematic on the top left, only a few of the total pulses are shown primarily for illustration of the idea. The 
bottom figure illustrates the pulse sequence for the first 3 time points. For each TR a single time‐point information is acquired
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 It was shown in a phantom that the pseudo‐SSFP‐MRF 
design is less sensitive than bSSFP‐MRF in the presence of 
B0 variation, resulting in an accurate signal description even 
without including off‐resonance and intravoxel dephasing in 
the dictionary. This makes the pseudo‐SSFP pattern depen-
dent on fewer degrees of freedom, thereby reducing the com-
plexity and size of the dictionary; however, it precludes the 
mapping of B0. Reported results for a brain scan in a healthy 
subject were in agreement with literature values (Table 1).

2.1.2 | Fast imaging with steady‐
state precision
Balanced SSFP–based acquisitions provide sensitivity to 
off‐resonance and a relatively high SNR but suffer from 
banding artifacts when a wide range of off‐resonant spins 
are present within the FOV. To compensate for this, an MRF 
approach was proposed based on the unbalanced SSFP (fast 
imaging with steady‐state precision [FISP], fast field echo, 
gradient‐recalled acquisition in steady state, gradient field 
echo, field echo, first postcontrast acquisition subtracted, 
and SSFP34) acquisition.35 This acquisition strategy adds an 
unbalancing gradient moment at the end of each TR, which 
produces a phase twist within each voxel, thereby retain-
ing signal coherence and reducing the sequence sensitivity 
to off‐resonance. Thus, the FISP‐MRF approach eliminates 
the banding artifacts; however, it has reduced SNR and is 
unable to quantify off‐resonance. Sample results illustrat-
ing FISP‐MRF’s insensitivity to off‐resonance are shown in 
Figure 5 and Figure S3. The FA varies smoothly using half‐
sine waves, similar to the bSSFP‐MRF approach, though no 
additional oscillations are added (Figure 4 and Figure S2). 
The TR variations (Figure 4 and Figure S2), the inversion 
recovery pulse, and the readout trajectory were the same as 
that used in the bSSFP‐MRF approach.

The accuracy of the FISP‐MRF35 approach was evaluated 
in phantoms. The authors reported a good agreement between 
FISP‐MRF and SE measurements for both T1 and T2. The 
agreement was retained even when the shim settings were 
changed, demonstrating the robustness of the FISP‐based 
approach to B0 inhomogeneity. The FISP‐MRF approach 
also showed good agreement with literature values in healthy 
volunteers for white and gray matter (Table 1). This same 
approach was also successfully translated to small animal im-
aging at 7 T.36

2.1.3 | Radiofrequency‐spoiled 
gradient echo
Recently, a new method was proposed by Rieger et al37 for 
simultaneous measurement of T1 and T2

*. In this approach, a 
RF‐spoiled gradient echo (GRE) based acquisition strategy, 
in which gradient and RF spoiling were used with an em-
pirically chosen smooth variation of TE (range: 14‐75 ms) 
and the FA variation based on the FISP‐MRF sequence.35 
The authors proposed to use a single‐shot EPI readout. 
For acceleration, they used partial Fourier (factor 6/8) and 
GRAPPA38‐based parallel imaging (factor = 3). A total of 
160 frames were acquired for a scan time of 10 seconds for a 
2D acquisition. The method was validated in phantoms and 
in healthy subjects, in whom close agreement with reference 
values over various regions of interest was seen.

F I G U R E  3  Examples of k‐space sampling trajectories used by 
different MRF sequences. A, Variable density spiral. B, Trajectory 
generated from a music file (Yo Yo Ma playing Johann Sebastian 
Bach’s Cello Suite No. 1) for the MRF‐Music design. C, Radial. D, 
Cartesian. For each time point, the trajectory changes to generate 
undersampling artifacts that are incoherent with the tissues fingerprints 
(a detailed version of this figure is available online)
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T A B L E  1  List of brain tissues, properties reported by different MRF approaches obtained from healthy volunteer scans

bSSFP 
(1.5 T)

FISP 
(3 T)

pSSFP 
(3 T)

Music 
(3 T)

QUEST 
(3 T)

Literature 
(1.5 T)

Literature 
(3 T)

WM T1 (ms) 685 ± 33 781 ± 61 1090 ± 75 847 ± 49 744‐809 608‐756 788‐898

1084 ± 45 
1084 ± 79

T2 (ms) 65 ± 4 65 ± 6 61.9 ± 6.4 48 ± 6.3 44‐55 54‐81 78‐80 
69 ± 3 
63‐80

GM T1 (ms) 1180 ± 104 1193 ± 65 1616 ± 78 1223 ± 65 1008‐1493 998‐1304 1286‐1393

1820 ± 110 
1703 ± 53

T2 (ms) 97 ± 5.9 109 ± 11 94.4 ± 5.4 64 ± 5.2 64‐71 78‐98 99‐117 
99 ± 7 
78‐117

CSF T1 (ms) 4880 ± 379 2000‐3800 4103‐5400 —

T2 (ms) 550 ± 251 115‐160 1800‐2460 —

Abbreviations: GM, gray matter; pSSFP, pseudo‐SSFP; WM, white matter. 
Note: For each approach, the estimated values are shown as well as the literature values used to validate the technique. 

F I G U R E  4  Summary of various parameter variations used by the different MRF frameworks. On the left side, the RF excitation patterns 
are expressed in degrees (except for the plug‐and‐play MRF [PnP‐MRF], where the FA is expressed by the normalized voltage driving the 2 coil 
configurations, in green and yellow). The right side shows the varying TR for the different time points (data for the PnP‐MRF were not available; a 
detailed version of this figure is available online). FISP, fast imaging with steady‐state precision; QUEST, quick echo splitting NMR 
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2.1.4 | Quick‐echo splitting NMR
Imaging patient populations such as those with deep brain 
stimulators or metallic implants require strict constraints on 
specific absorption rate, thereby imposing restrictions on 
the RF duty cycle and RF pulse shapes. Jiang et al39 pro-
posed an approach for these applications, using a quick echo 
splitting NMR (QUEST) based MRF sequence to overcome 
these constraints. The sequence used subsequent “acquisi-
tion blocks” of QUEST (Figure 6). Each block consisted of 4 
aperiodic RF excitations to acquire a total of 11 higher‐order 
echoes. Acquiring also the FID after each pulse, a total of 
15 MRF time points were obtained from only 4 RF excita-
tions. This QUEST block was repeated 15 times, leading to a 
total of 225 time points acquired through 60 RF pulses. The 
FA of each RF excitation was randomly selected between 1° 
and 60°, and the time interval between the first and second 
RF pulse of each QUEST block was randomly changed be-
tween 10 ms and 13 ms (Figure 4 and Figure S2). This entire  
acquisition was repeated 12 times to acquire the 12 inter-
leaves needed to fully sample the center of k‐space for each 
time point.

The MRF‐QUEST framework allowed significant reduc-
tion of the number of RF pulses used during the acquisition 
and thereby the energy deposition into the subject. In vitro 
and in vivo tests showed that the accuracy of MRF‐QUEST 
is in line with the standard SE‐based methods and literature 
values for brain tissues except for white matter T2 (Table 1), 
at lower specific absorption rate than GRE or turbo SE meth-
ods (MRF‐QUEST = 0.03 W/kg, GRE = 0.1 W/kg, and turbo 
SE = 0.3 W/kg).39

2.2 | Approaches designed for specific 
applications

2.2.1 | Perfusion and vascular properties
Microvascular structure
The MRF framework has also been extended to characterize 
the properties associated with the microvascular network. In 
the study performed by Christen et al,21 the authors devel-
oped a new approach to measure the cerebral blood volume, 
the mean vessel radius and the blood oxygenation saturation. 
The acquisition sequence was based on a GRE sampling of 
the FID and SE sequence. In this acquisition, 40 time points 
were sampled for each TR, with a ΔTE of 3 ms, and 14 ech-
oes acquired before the SE‐associated 180º pulse. No under-
sampling was used for this acquisition. A total of 12 slices 
were acquired to cover the entire brain in 4 minutes. The ac-
quisition was performed before and 2 minutes after injection 
of the contrast agent (ferumoxytol). Unlike the other meth-
ods, the signal variation in this approach is caused by the 
change in contrast concentration and variations in echo type 
and TE. Furthermore, the ratio of the precontrast and post-
contrast signal evolutions were used as the fingerprint, which 
reduced the effect of B0 inhomogeneities and T2. In vivo 
results showed good contrast of cerebral blood volume be-
tween white matter and gray matter, whereas the mean radius 
and blood oxygenation saturation were found to be homo-
geneous. The cerebral blood volume values obtained agreed 
with the literature values obtained from PET and alternative 
MRI approaches as well as with a steady‐state susceptibility 
approach.

F I G U R E  5  Example of in vivo comparison of the bSSFP‐MRF and FISP‐MRF of one asymptomatic volunteer acquired at 3 T. In this subject 
the shimming was intentionally corrupted to obtain severe B0 inhomogeneity. In this situation, the bSSFP‐MRF presents banding artifacts, while the 
FISP‐MRF approach maintains a diagnostic image quality (a detailed version of this figure is available online) 
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Arterial spin labeling
The feasibility of performing arterial spin labeling (ASL) 
based on MRF has recently been investigated. Su et al19 
modified an ASL sequence by using a variable labeling du-
ration time for each TR, removing the postlabeling delay 
and ordering the labeling‐control pairing in a pseudorandom 
fashion. The acquisition was performed using an EPI readout 
for 3D volumetric coverage for each time point and a total of 
3 minutes of scan time. Different properties can be extracted 
depending on the model applied. The authors used 2 differ-
ent tissue models. A single‐compartment model (tissue and 
microvasculature) was used to estimate cerebral blood flow, 
bolus arrival time (BAT), T1, and B1+. A 2‐compartment 
model was also used, in which pass‐through blood was intro-
duced as a second compartment, which additionally provided 
pass‐through arterial bolus arrival time, pass‐through blood 
volume (vblood), and pass‐through blood travel time.

The MRF‐ASL method was compared with Look‐Locker–
based pulsed ASL and pseudo‐continuous ASL techniques 
in healthy subjects. The cerebral blood flow and bolus ar-
rival time values measured using MRF‐ASL were correlated 
with corresponding measurements using Look‐Locker–based 
pulsed ASL. Additionally, the reproducibility of MRF‐ASL 
was also evaluated in these subjects, whose results provided 
a coefficient of variation under 10% for all of the estimated 
properties. The sensitivity of MRF‐ASL to hemodynamic 
variation was tested through a hypercapnic challenge on 
volunteers in whom an increased perfusion was found to be 
concomitant with the CO2 inhalation of the volunteers. The 
sequence was applied on Moyamoya patients, in whom bolus 
arrival time measurements obtained with MRF‐ASL were in 
concordance with CT‐based measurements.

2.2.2 | Cardiac MRF
To translate the MRF framework to cardiac imaging, a 
FISP‐based design was used because of its insensitivity 
to off‐resonance artifacts (Figure 4 and Figure S2), and 
electrocardiogram triggering40 was used to reduce the ef-
fects of cardiac motion. Figure 7 shows examples illustrat-
ing the advantages of electrocardiogram triggering. The 
acquisition was performed over 16 heartbeats, acquiring 
a total of 768 time points. The FAs used in this design 
ranged from 4° to 15° (Figure 4 and Figure S2). To en-
hance the T1 and T2 sensitivity of the sequence, inversion 
pulses or T2 preparation modules were played out before 
each acquisition window. The combined use of adiabatic 
preparation pulses and low FA values makes the cardiac 
MRF approach less sensitive to B1+ variations over the 
FOV. The electrocardiogram triggering also affects the 
timings and weightings in the signal time courses, and 
thus must be dynamically accounted for in dictionary 
computation, as described subsequently in the dictionary 
generation section.

Cardiac MRF measurements in phantoms were in good 
agreement with SE measurements even for acquisitions with 
different simulated electrocardiogram heart rates, demon-
strating robustness to variations in heart rate. The reported 
tests on volunteers also showed good agreement with refer-
ence sequences and literature (Table 2) for all myocardial tis-
sues except for left‐ventricular blood T2. This mismatch can 
be attributed to the 2D nature of the approach, which allows 
spins to enter and leave the acquisition plane and experience 
an excitation history that cannot easily be simulated in the 
dictionary.

F I G U R E  6  Schematic showing the acquisition of a QUEST block within the MRF‐QUEST acquisition. A, For each block, 4 RF pulses 
are used, with a randomly varying FA (see Figure 4 and Figure S2). The second, third, and fourth TRs are linearly related to the first TR with the 
ratios of 2, 4 and 8, respectively. The first TR of each QUEST block varies following the graph in Figure 4. For each QUEST block, 15 echoes are 
acquired, representing 15 MRF time points. B, The MRF‐QUEST acquisition consists of an inversion pulse, followed by 15 QUEST blocks (image 
reprinted with permission from Jiang et al39)
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2.2.3 | Abdominal MRF
Chen et al41 proposed an approach to apply the MRF frame-
work to the abdomen. Large variations in B0 and RF transmit 
(B1+) fields present challenges in abdominal imaging; there-
fore, the authors chose the FISP‐based acquisition to over-
come the B0 inhomogeneity. To compensate for variations in 
B1+, a 1.8‐second long Bloch‐Siegert–based scan42 was used 
to estimate B1+ map, acquired within the same breath‐hold 
as the MRF scan. B1+ was used as an additional property for 
dictionary simulation, as described subsequently.

The authors tested this approach in phantoms and in 
healthy subjects (Table 2) and concluded that incorrect B1+ 
estimation led primarily to errors in T2, which were corrected 
after the incorporation of the measured B1+ maps. The re-
sults from the healthy subjects were compared with litera-
ture values (Table 2) for multiple organs. When applied to 
patients, the FISP‐MRF sequence exhibited a significant in-
crease in T1 and T2 values (1673 ± 331 ms and 43 ± 13 ms, 
respectively) within metastatic adenocarcinoma lesions com-
pared with the values from lesion‐free liver tissue (840 ± 113 
ms and 28 ± 3 ms, respectively) as well as compared with the 
values from healthy subjects (Table 2).

2.3 | Approaches to overcome specific 
limitations

2.3.1 | B1+ inhomogeneity
Integrated B1+
An alternative approach to mitigate the effects of B1+ inho-
mogeneities was proposed by Buonincontri et al43 This de-
sign included B1+ as an additional measurement property 
along with T1, T2, and M0. Because the authors noticed B1+ 
variations primarily affect T2, their approach used a B1+ sen-
sitizing segment, which is less sensitive to T2,

44 at the end 
of a FISP‐based MRF sequence. This B1+ sensitizing seg-
ment consisted of alternating blocks (15 time points) of 90° 
and waiting periods with 0° FA (Figure 4 and Figure S2). 
The authors showed with phantom tests that their approach 
allowed for compensation of B1+ inhomogeneities when 
combined with 3D imaging or when a simulation of the slice 
profile36,45 is included in the dictionary. The results were also 
confirmed in an ex vivo study in a rat using a 4.7T animal 
scanner (Figure 8 and Figure S4). This approach cannot over-
come large variations in B1+ due to signal voids. Because the 
B1+ information is heavily reliant on the final segment of the 

F I G U R E  7  Example of cardiac MRF, with and without the electrocardiogram (ECG) triggering. The maps without ECG triggering end 
up being blurred and the myocardial and left‐ventricular blood pool values are underestimated. The ECG triggering compensates for the cardiac 
motion and allows one to accurately estimate the tissue properties
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acquisition, any kind of acquisition errors in the latter stages, 
such as subject motion, would result in errors in estimated 
B1+ values, which in turn would affect other estimated tissue 
properties.

Plug‐and‐play MRF
The approaches described so far account for B1+ variations in 
dictionary simulations using dedicated41 or integrated43 B1+ 
estimates to reduce the effects of B1+ on the estimated prop-
erties. However, in applications presenting large variations in 
B1+, it becomes extremely difficult to extract viable informa-
tion in certain regions due to destructive interference of the 
RF field. The B1+ variations can be extremely problematic, 
especially for applications such as high field imaging or im-
aging near orthopedic implants. Cloos et al46 proposed an ap-
proach in which the MRF framework is used to convert B1+ 
heterogeneities as a means to probe information. The key 
idea was to use 2 or more spatially complementary transmit 

coil modes to generate temporal variations in illumination 
(excitation profile) over different parts of the acquisition se-
quence. In this way, the method does not require a homoge-
neous B1+ field, but only sufficient signal from each spatial 
location for at least some part of the acquisition. This is a 
significant relaxation of constraints, especially at high fields. 
The MRF framework was then used to estimate the B1+ val-
ues in the different modes and to reduce the sensitivity of 
estimated tissue properties to B1+ variations. The authors 
termed this approach “plug‐and‐play MRF” (PnP‐MRF).

The PnP‐MRF sequence as initially proposed consisted 
of 4 acquisition segments, each containing 120 time points. 
The TR ranged from 4.8 ms to 8 ms, and the FA variations 
were expressed with the voltage amplitude used to drive 
the different coil modes (Figure 4 and Figure S2). The 
odd‐numbered segments were designed using a RF‐spoiled 
GRE‐based acquisition and the complementary coil modes 
were circularly rotated from time point to time point. The 

T A B L E  2  Relaxation times measured in different tissues of the body with different MRF approaches

Abdomen 
(3 T)

PnP 
(3 T)

Cardiac 
(3 T)

Literature

Liver T1 (ms) 745 ± 65 809 ± 71
824 ± 61

T2 (ms) 31 ± 6 34 ± 4

Spleen T1 (ms) 1232 ± 92 1328 ± 31
1251 ± 95

T2 (ms) 60 ± 19 61 ± 9

Kidney 
medulla

T1 (ms) 1702 ± 205 1545 ± 142
1610 ± 55

T2 (ms) 60 ± 21 81 ± 8

Kidney 
cortex

T1 (ms) 1314 ± 77 1142 ± 154
1194 ± 88

T2 (ms) 47 ± 10 76 ± 7

Skeletal muscle T1 (ms) 1100 ± 59 1499 ± 56 898 ± 33
1017 ± 78
1420 ± 38

T2 (ms) 44 ± 9 26 ± 1 29 ± 4
32 ± 2

Fat T1 (ms) 253 ± 42 323 ± 57 343 ± 37
307 ± 37
371 ± 8

T2 (ms) 77 ± 16 126 ± 10 68 ± 4
133 ± 4

Myocardium T1 (ms) 1199‐1316 1080‐1500

T2 (ms) 34‐43 38‐50

Oxygenated blood T1 (ms) 1701‐1931 1550‐1932

T2 (ms) 76‐107 175‐275

Note: For each approach, the estimated values are shown, compared with the literature values used to validate the technique. 
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even‐numbered segments were based on a FISP acquisi-
tion. The coil mode was switched from segment to segment 
and all time points within a segment used the same coil 
mode. The interleaving of the complementary coil modes 
avoids destructive interference between RF sources, and 
avoids local heating of conductive tissues by minimizing 
constructive interference of electric fields. Radial sampling 
was used and each radial spoke was rotated by an angle 
equal to 84º/(total number of spokes per time point) from 
TR to TR, to improve sampling incoherence across the tem-
poral dimension (Figure 3).

The authors tested the approach on a phantom at 7 T, 
showing that alternating different coil modes leads to a sup-
pression of the B1+ artifacts on the tissue property maps 
(Figure 8 and Figure S4). Additionally, the PnP‐MRF was 
applied in a patient with a prosthetic metal implant and com-
pared with a turbo‐SE acquisition. The corresponding results 
showed that the PnP‐MRF approach provides unbiased prop-
erty maps despite the strong heterogeneities in B1+ due to the 
metallic implant.

2.3.2 | Music MRF
The sound generated by MRI hardware during an acquisi-
tion can not only be unpleasant, but may also be deleterious, 
especially in sensitive patient populations such as children, 
the elderly, those with claustrophobia, and patients with 

psychiatric disorders.47 These sounds may increase patient 
anxiety.48,49 Ma et al50 proposed an approach that exploits the 
freedom in encoding found in the MRF framework to convert 
a long‐existing disadvantage (gradient noise) into an advan-
tage (music). The proposed acquisition was named “MRF‐
Music” and used the waveform of audio files to design the 
acquisition timing and gradients.

The authors noted that the sound quality of the generated 
music was highly dependent on the retention of the basic tim-
ing and the zero crossings of the music waveform. Therefore, 
the acquisition was split into segments using criteria based 
on zero‐crossings of music and timing constraints of acqui-
sition, which allows one to independently design gradients 
for each segment. An example TR is shown in Figure 9, and 
an example trajectory is shown in Figure 3. Finally, variable‐
rate selective‐excitation RF pulses were designed for each 
time point to adjust for the modification of the corresponding 
slice‐selection gradient to maintain consistency with respect 
to the excitation slice profile.

When the authors tested the subject comfort level of the 
MRF‐Music approach, they found it to be significantly better 
than a turbo SE and a diffusion‐weighted EPI acquisition, al-
though periods of no scanning were rated the most comfort-
able. The accuracy of MRF‐Music was in agreement with the 
reference SE‐based acquisition, but the efficiency was lower 
than the standard bSSFP‐MRF, although still fast enough for 
clinical applications.

F I G U R E  8  Example results illustrating different methods to reduce the effects B1+ heterogeneities. A, Results using a separate B1+ 
measurement to correct the effects for a FISP‐MRF abdominal scan in a healthy human subject. B, Results using an MRF acquisition with 
integrated B1+ measurement to image an ex vitro rat brain. C, Results using a PnP‐MRF acquisition with 2 B1+ coil modes to image a phantom. (A 
detailed version of this figure is available online; images reprinted with permission from Chen et al,41 Buonincontri et al,43 and Cloos et al46) 
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2.3.3 | Volumetric coverage
Simultaneous multislice
The simultaneous multislice (SMS) imaging technique was 
applied to MRF for achieving accelerated multislice mul-
tiparametric imaging.51,52 The gradient‐based approach was 
based on “blipped‐CAIPI,” which uses an additional z‐gradi-
ent blip to achieve phase modulation across slices, allowing 
for simultaneous acquisition of multiple slices with different 
phase encodings. The moments of the Gz blips were varied 
at each time point to create controlled aliasing of simulta-
neously acquired slices. This method was termed “t‐blipped 
SMS‐MRF.” As a proof‐of‐principle implementation, the 

bSSFP‐based MRF16 sequence was modified to incorporate 
multiband variable‐rate selective‐excitation RF pulses53 and 
additional Gz blips before and after readout. It was shown 
that using t‐blipped SMS‐MRF, a multiband factor of 2 
can be achieved using a reconstruction algorithm based on 
slice‐SENSE,51 and a multiband factor of 3 can be achieved 
using a reconstruction algorithm based on slice‐GRAPPA.54 
In both of these methods, the SMS decoding was performed 
through both phase cycling and parallel imaging. The coil 
sensitivities for slice‐SENSE were estimated through a modi-
fied adaptive combination method,51,55 whereas for slice‐
GRAPPA the kernel was estimated using a separate training 
data set (1 second/slice). Additionally, an RF‐based phase‐
cycling approach was used52 to achieve a multiband factor of 
2. In this method, the SMS decoding was performed through 
pattern matching to a slice‐specific dictionary.

Simultaneous multislice t‐blipped with multiband = 2 
showed high concordance correlation coefficients in Monte 
Carlo simulations compared with the MRF acquisition. In 
addition, the reported results of an in vivo scan showed good 
agreement of the SMS‐MRF maps with the bSSFP‐MRF when 
a smooth off‐resonance prior is used. When the multiband 
factor was increased to 3, the slice‐SENSE reconstruction51 
was significantly worse than the slice‐GRAPPA54‐based 
reconstruction. These SMS‐based approaches provide mul-
tiple slices without increasing the acquisition time, which 
increases the scan efficiency per slice. However, these tech-
niques increase the specific absorption rate due to the use of 
multiband pulses and are limited to noncontiguous volumet-
ric coverage.

Three‐dimensional MRF
For many clinical applications, contiguous volumetric cov-
erage is crucial. Ma et al56 extended the MRF approach to 
provide contiguous volumetric coverage using stack‐of‐spi-
rals–based 3D k‐space coverage. To maintain the signal 
across different slice‐encoding values, the MRF signal evolu-
tion cycle was repeated multiple times to ensure adequate k‐
space coverage for each time frame. The acquisition used an 
undersampling factor of up to 48 along the in‐plane direction 
and an acceleration rate of 3 along the slice‐encoding direc-
tion. The uniform rotation (7.5º)–based spiral ordering was 
used, while the slice encoding was stepped from TR to TR 
to generate a sheared‐grid–based undersampling in the kz‐t 
space. The study used a FISP‐based MRF sequence pattern 
with each cycle consisting of 14 seconds of MRF data ac-
quisition and 3 seconds of signal recovery. The method was 
evaluated in phantoms and in vivo, with full 3D coverage in 
the brain with a resolution of 1.2 × 1.2 × 3 mm3 and acquisi-
tion time of 4.6 minutes.

Liao et al57 also presented an approach that also used 
stack‐of‐spirals–based 3D MRF acquisition. The acqui-
sition used an undersampling factor of up to 30 along the 

F I G U R E  9  Schematic diagram illustrating a segmentation of 
TR based on an audio file for the gradient design of MRF‐Music. A, 
Zero‐crossings of the music waveform are identified (black crosses). 
B, Zero‐crossings are regrouped into 4 segments (red crosses) as a 
function of the minimum RF duration and acquisition time. The first 
segment is used to design the slice‐selection gradient; the second one 
is used to design the slice‐refocusing gradient; the third one encodes 
the read‐out gradients; and the last one is used to design the spoiling 
gradient (image reprinted with permission from Ma et al50) 
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in‐plane direction and a uniform acceleration rate of 3 along 
the slice‐encoding direction. The study used a FISP‐based 
MRF acquisition with each partition encoding cycle consist-
ing of 5 seconds of MRF data acquisition and 2 seconds of 
signal recovery. For reconstruction, the authors used a slid-
ing window approach along the temporal dimension to re-
duce the in‐plane aliasing artifacts, followed by a GRAPPA 
reconstruction to eliminate aliasing from through‐plane ac-
celeration, and finally a voxel‐wise pattern matching recon-
struction. The kernel weights were estimated from separate 
training data, which were acquired during the 2‐second signal 
recovery phase of the acquisition. The method was evaluated 
in phantoms and in vivo brain imaging with 1‐mm isotropic 
resolution whole brain data acquired in 7.5 minutes.

3 |  DICTIONARY GENERATION

The MRF dictionary contains simulated signal evolutions 
using a predefined range of tissue‐property combinations. 
Because the dictionary is used to assign the tissue properties 
to each pixel, the accuracy of MRF is governed by the ac-
curacy of the signal model. The dictionary should cover the 
broadest possible range of physiologically relevant combina-
tions of tissue properties. However, in a straight‐forward im-
plementation of pattern matching, the dictionary size presents 
a trade‐off between precision35 and reconstruction speed. For 
a given sequence pattern, the dictionary needs to be gener-
ated only once except for experiment designs in which the 
dictionary must be dynamically adapted to the subject, such 
as cardiac or vascular fingerprinting.

The dictionary is generated by modeling the spin behavior 
during the acquisition. The dictionary for the bSSFP‐based 
MRF approach proposed by Ma et al16 was generated using 
the Bloch equations, which modeled the effects of the RF 
pulses and timing of the sequence on a single isochromat 
resonating at a given frequency.16 This was performed under 
the assumption that each voxel consists of a single isochro-
mat. The application of the same Bloch equation model can 
also be applied to the FISP‐based MRF acquisition,35,40,41 
but with increased computation time. Because a dephasing 
gradient was used in the FISP‐based sequence, the signal 
within each voxel was modeled as an average from multiple 
isochromats. As an efficient alternative for FISP simulations, 
several authors35,39,46,50 have used the extended phase graph 
formalism.58,59 This approach describes the spin system 
within a voxel as a discrete set of dephasing states, and is an 
efficient way to represent the evolution of spins affected by 
unbalanced gradients.

For the abdominal MRF approach by Chen et al,41 the dic-
tionary also included the effect of B1+, simulating it as the 
ratio of the effective FA compared with the nominal one. This 
dimension was not used directly in the matching process; 

rather, the B1+ was measured with a separate scan prior to 
the MRF acquisition and the measured values of B1+ are 
enforced in the dictionary during the matching process. The 
approaches of Buonincontri et al43 and Cloos et al46 instead 
quantified B1+ directly with the pattern matching, although 
at the expense of higher computation time for dictionary gen-
eration and pattern matching.

Generally, the dictionary is computed once and stored; 
however, there are some techniques for which the dictionary 
must be computed for each acquisition. One example is the 
cardiac adaptation of MRF from Hamilton et al,40 in which 
the patient‐specific sequence time affected by heart rate vari-
ations must be included in the dictionary, requiring the dic-
tionary to be computed for each patient. However, only 12 
seconds were needed to generate the dictionary due to the 
relatively few number of properties needed for the FISP ac-
quisition and the use of the extended phase graph formalism.

In the work by Christen et al,21 the signal evolutions for 
a given set of microvasculature properties before and after 
the contrast injections were predicted using numerical simu-
lations incorporating diffusion effects and models described 
in Pannetier et al.60 In these simulations, each vessel was as-
sumed to have free water exchange across the walls. The ap-
proach modeled the effects of water diffusion, approximated 
as a discrete Gaussian kernel, perturbations in local magnetic 
fields, and application of RF pulses.

A 2‐compartment model was explored by Su et al19 for 
MRF‐ASL. The model had a pass‐through arterial compart-
ment representing arterial blood that did not perfuse to the 
tissue. A conventional perfusion kinetic model was used to 
estimate the evolution of the tissue magnetization. Multiple 
factors, such as tissue bolus arrival time, history of label/con-
trol state and blood T1, were used to model the TR‐to‐TR 
variation of arterial input function. Additionally, the effects 
of nonsaturating RF pulse and B1+ on the initial condition of 
the tissue magnetization were also incorporated in the model. 
Finally, the sum of the magnetization of blood spins in the 
pass‐through artery was used as an estimate of the blood 
magnetization.

4 |  RECONSTRUCTION

4.1 | Pattern recognition
The final step after the acquisition and dictionary genera-
tion is pattern matching to identify the dictionary entry that 
best represents the tissue present in each voxel. The accuracy 
and efficiency of MRF is dependent on this pattern match-
ing being robust to noise and artifacts due to undersampling. 
Several reconstruction algorithms have been proposed, from 
the simplest template matching to more advanced nonlinear 
reconstructions. Some of these aim at speeding up the match-
ing process,61,62 whereas others instead aim to reduce the 
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aliasing artifacts, which can result in reduced acquisition time 
and higher accuracy in the estimated tissue properties.33,63-67

4.1.1 | Template matching
In the proof‐of‐principle implementation of MRF,16 the pat-
tern recognition algorithm was based on template matching, 
which uses a correlation‐based metric to identify the best 
match (Figure 10). For this method, the complex inner prod-
uct between the normalized voxel fingerprint and each dic-
tionary entry is computed to find the maximum (in absolute 
value); proton density is then computed as the scaling factor 
between the voxel fingerprint and the corresponding unnor-
malized dictionary match.

4.1.2 | Error tolerance in fingerprint 
identification
The pattern recognition step can be made to be tolerant to er-
rors; however, the properties and the level of error tolerance 
depends on the metric and the algorithm used for the recogni-
tion. For example, the inner product–based template match-
ing approach has been shown to be tolerant to undersampling 
artifacts16,35 that are spatio‐temporally incoherent and inco-
herent with the fingerprint time course. The spatio‐temporal 
incoherence of the undersampling pattern as measured by the 
mutual coherence of the sensing matrix68-70 ensures that the 
signal from pixel A is not consistently bleeding to pixel B, 
thus avoiding potential biases. However, the incoherence with 
the fingerprint time course as measured by correlation with the 
temporal subspace of the dictionary ensures that the combined 
interference from multiple locations does not appear like a tis-
sue fingerprint. As was noted in Ref 16, errors that do not 

prevent the correct simulated fingerprint from being the best 
match based on the matching algorithm are tolerable, even 
if the matching metric is globally reduced or the gap in the 
metric between the first and second best match is reduced. In 
other words, it is the relative position that matters as opposed 
to the absolute value of the metric. Thus, template matching 
will be tolerant to any errors that lie in the temporal null‐space 
of the dictionary. Taking advantage of these concepts, Ma et 
al16 showed that using a single interleaf of a variable‐density 
spiral trajectory for a single frame and rotating this interleaf 
by 7.5° from time frame to time frame was adequate in gener-
ating undersampling artifacts that are sufficiently spatio‐tem-
porally incoherent with each other and temporally incoherent 
with the signal time courses. This sampling strategy can yield 
accurate maps with each frame having an acceleration factor 
of 48 at the edge of the k‐space and 1 at the center of the k‐
space.16 The template matching has also been shown to be tol-
erant to subject motion during the latter part of the acquisition, 
and the matching process is still able to properly identify the 
underlying tissues. However, if the motion is severe and oc-
curs in the early or the middle stage of the acquisition, then the 
conventional pattern matching fails to reconstruct artifact‐free 
property maps.71-73 However, improvement of motion insen-
sitivity is an active area of research.71-76

4.2 | Approaches to reduce matching time
For clinical applications, tissue property maps must be gen-
erated rapidly. Although template matching using the inner 
product is accurate, it can take several minutes to compute for 
a single slice, depending on dictionary size and the number 
of pixels.61 Finding ways to speed up the matching process is 
therefore important for the clinical application of MRF.

F I G U R E  1 0  Fingerprint matching concept as proposed by Ma et al. The signal evolution of each voxel (voxel fingerprint) is compared with 
all of the simulated fingerprints of different tissue types within the dictionary. The correlation comparison is done using the absolute value of inner 
product. The dictionary fingerprint with the highest correlation is considered the best match, and the corresponding tissue or system parameters are 
used for the respective location in the quantitative property maps 
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McGivney et al61 proposed a method to reduce the com-
putation time of the pattern recognition step by projecting 
the dictionary and voxel fingerprints to a lower‐dimensional 
subspace along the time domain and performing the pattern 
matching in this lower‐dimensional subspace. The subspace 
was determined by applying singular value decomposition 
(SVD) to the dictionary and using the k singular vectors as-
sociated with the largest singular values as the basis for the 
subspace. The selection of the subspace dimension, k, de-
termines the tradeoff between loss of accuracy in estimated 
properties and reduction in computational time. The steps 
associated with this method are as follows: (1) SVD of the 
original dictionary was computed to find the singular vectors 
and singular values; (2) the transformation matrix was gener-
ated using the k largest temporal singular vectors; (3) dictio-
nary compression was performed through the transformation 
matrix (only once); (4) acquired data (either from the Fourier 
domain or from the spatial domain) were projected to the 
lower‐dimensional subspace using the transformation ma-
trix; and (5) pattern matching was performed on the projected 
data and dictionary to estimate the tissue property maps. This 
method showed a reduction of template matching time by a 
factor of 3.4 for a bSSFP‐based MRF acquisition (k = 200) 
and a factor of 4.8 for a FISP‐based MRF acquisition (k = 25) 
with the mean error in estimated properties under 2%.

Recently, Yang et al77 proposed using randomized SVD to 
directly estimate low‐dimensional dictionary subspace with-
out the need for simulating all of the atoms of the original 
dictionary, thereby reducing the computation time and the 
storage size of the dictionary. Additionally, they proposed 
to exploit the smoothness of the tissue property dimension 
in the randomized SVD space to further reduce the size and 
computation time of the dictionary. First, the tissue‐prop-
erty dimension of the randomized SVD space of the coarse 
dictionary was fitted to a polynomial hypersurface. Second, 
the polynomial hypersurface was used to estimate the tissue 
properties at finer resolution. These methods were illustrated 
to provide memory savings during dictionary computation 
and illustrated accurate T1 and T2 maps even from a dictio-
nary with a 4‐times coarser step size for each tissue property.

The fast group‐matching algorithm62 is another method 
that can be used to speed up the matching time. In this 
method, dictionary entries were grouped based on correla-
tion, and a representative fingerprint signal for each group 
was calculated based on the mean of all the atoms within the 
group. Once the dictionary has been separated into groups, 
the following steps were performed: (1) The correlation be-
tween the voxel fingerprint and each group’s representative 
fingerprint was computed (2) groups were pruned, based on 
relative or absolute correlation threshold; and (3) SVD com-
pression–based matching61 was applied on the atoms from 
the remaining groups to identify the voxel properties. The 

number of groups and pruning criteria can be adjusted based 
on the dictionary to achieve optimal reduction in computation 
time with minimal loss in accuracy. For a bSSFP‐based MRF 
acquisition, the computation time for the group‐matching al-
gorithm (2.5 seconds) was smaller by a factor greater than 10 
compared with SVD compression method (27 seconds) and 
by a factor greater than 70 compared with template matching 
(178 seconds) with a mean relative error of the estimated tis-
sue properties under 2%. The speed‐up factors are dependent 
on the MRF data, the dictionary size, and the reconstruction 
parameters; thus, they can vary across different studies.

4.3 | Compressed sensing–based approaches 
using prior knowledge
Connections can be made between MRF and the CS frame-
work.68,69,78 Recent advances in compressed sensing and 
prior‐information–based reconstruction algorithms can be 
used to improve the pattern recognition–based MRF recon-
struction. These methods additionally rely on assumptions 
associated with convergence theory for the nonconvex opti-
mization problems.

In the Bloch response recovery in the iterated projection 
(BLIP)64 work, the MRF problem is formulated within a 
standard CS framework. This method uses a Bloch response 
manifold–based approach with a recovery algorithm based 
on the projected Landweber algorithm.79 The authors treated 
the Bloch response manifold as a continuous signal and ap-
plied subsampling to this manifold. Cline et al80 proposed an 
approach termed “accelerated iterative reconstruction MRF,” 
which improved on the work done by Davies et al.64 The au-
thors performed the CS‐based iterative reconstruction79 in 
a low‐dimensional subspace determined by the dictionary 
and used spatial regularization on the M0 map. Additionally, 
Cline et al80 presented a k‐dimensional tree‐based dictionary 
matching approach to speed up the computation time for tem-
plate matching.

The work presented by Zhao et al in Ref 66 is based on a 
statistical framework for maximum likelihood estimation of 
the desired tissue properties. Maximum likelihood estimation 
presents favorable properties such as asymptotic unbiased-
ness and asymptotic efficiency. In this formalism, the accu-
racy of the estimated tissue properties is reliant on the fidelity 
of the following measurement model:

where d represents the k‐space measurements, F is the 
undersampled Fourier transform operator, S represents the 
receive coil sensitivities, � is the signal evolution for given 
T1 and T2 using Bloch equations, � is the proton density, and 
� is additive complex white Gaussian noise. The recovery 
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algorithm was based on variable splitting strategy, alter-
nating direction method of multipliers,81,82 and the variable 
projection method. The accuracy of the algorithm is highly 
dependent on the initialization because of the nonconvexity 
of the cost function. The authors note that initialization using 
gridding‐based reconstructed time frames have consistently 
yielded accurate results.

Pierre et al developed an iterative reconstruction ap-
proach called iterative multiscale MRF.63 This method 
incorporated the prior knowledge of the k‐space sampling 
density by taking advantage of the higher sampling den-
sity in the center of the k‐space. Their method iterated be-
tween data consistency and pattern recognition. The data 
consistency was performed using windowed k‐space mea-
surements in which the kernel width gradually increased 
as a function of iteration number to include higher‐reso-
lution measurements. The study showed in vivo brain re-
sults using bSSFP‐MRF, illustrating reduction of scan time 
(factor = 6; time frames = 500) with accuracy similar to 
original MRF.

In the method proposed by Wang et al,65 an independent 
estimate of each frame was performed based on a CS frame-
work with a sparsity constraint in the wavelet domain. A non-
linear conjugate gradient–based algorithm was used to solve 
this CS‐based problem.78 A similar pattern recognition was 
used as in the original MRF16; however, instead of using the 
modulus of the inner product as the metric, the authors used 
a learned Mahalanobis distance metric, defined in the follow-
ing equation, with the learning algorithm based on relevant 
component analysis:

where d̂j are the normalized dictionary fingerprints, x̂ is 
the normalized voxel fingerprint, T  is the transpose opera-
tion, A is the learned positive semidefinite matrix, and dl is 
the correct match. The method was evaluated using numer-
ical phantoms and acquisition simulations to illustrate im-
provement in scan time and accuracy of estimated properties 
compared with the conventional approach.

To reconstruct the data of the pseudo‐SSFP acquisition, 
Assländer et al33 designed an algorithm that uses a spatial 
smoothness prior in addition to the common prior of con-
sistency with Bloch equations. The image‐based smooth-
ness prior was incorporated using a sparsity constraint in the 
wavelet domain across the spatial dimensions and was jointly 

applied along time. Their algorithm was designed based 
on the variable splitting strategy and alternating direction 
method of multipliers methods. There are several factors that 
determine the appropriateness of the spatial‐smoothness con-
straint, such as the type of acquisition, the constraints in the 
reconstruction problem, and the reconstruction algorithm. 
There have been several studies that demonstrate the advan-
tages of the spatial smoothness prior, whereas other studies 
have shown no major improvement. Therefore, it may be ben-
eficial to include a smoothness prior when possible, with one 
drawback being increased computation time.

Due to the nature of the Bloch equations and the de-
sign of the acquisitions, the signal evolutions for property 
mapping have shown high spatio‐temporal correlation.83-87 
This prior knowledge has been exploited by multiple ap-
proaches to achieve high acceleration for traditional prop-
erty mapping. For example, Pederson et al83 proposed an 
approach that used constraints on the support of the data 
in a hybrid space consisting of phase‐encode k‐space di-
mension and temporal principal component dimension. 
This approach was applied to accelerate (factor = 8) mul-
tiproperty mapping (T1, T2, and M0) in brain using inver-
sion recovery–TrueFISP acquisition.13,88 Doneva et al89 
presented an approach to linearize the exponential signal 
models of relaxation properties using an overcomplete dic-
tionary, which is formed using the K‐SVD algorithm.90 For 
reconstruction, they exploit the sparsity in the dictionary 
coefficient space (i.e., the signal at each pixel can be repre-
sented by a linear combination of a few dictionary atoms). 
Using this approach, they present acceleration up to 6 for 
T1 mapping in brain and up to 4 for T2 mapping in brain. 
Lingala et al84 and Zhao et al87,91 presented approaches 
that exploit the low rank of the spatio‐temporal data matrix 
and the sparsity of data in a transform domain. These ap-
proaches have been applied widely for accelerating param-
eter mapping.91-93

Because MRF also shares the property of having high 
spatio‐temporal correlation, multiple groups have exploited 
this prior knowledge to further accelerate the MRF acquisi-
tion. Zhao et al94 presented an approach in which they used 
a low‐rank model through matrix factorization85 and dictio-
nary‐based temporal subspace61 to reconstruct artifact‐free 
time frames, which were then used to estimate properties 
through template matching.16 The authors showed improve-
ment in accuracy compared with template matching in ac-
celerated (700 time frames) in vivo FISP‐MRF brain data, 
at the expense of increased computation time. Assländer et 
al95 also presented an approach using low‐rank approxima-
tion through a dictionary‐based subspace. The reconstruc-
tion problem was solved using the alternating direction 
method of multipliers algorithm. The authors showed im-
provement in the precision of estimated tissue properties 
in accelerated (850 time frame equivalent to 4.1 seconds 
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of acquisition time) in vivo pseudo‐SSFP‐MRF brain data 
acquired using radial trajectory. Doneva et al96 presented 
a matrix completion–based method in which the low‐rank 
prior is applied in k‐space instead of image space, thereby 
significantly reducing the computation burden by elimi-
nating the need for forward and backward Fourier trans-
formations. However, this restricts the algorithm by using 
additional priors such as sparsity in transform domains, 
which is not the case for the other approaches mentioned 
previously. Additionally, the computation time is further 
reduced by calculating a low‐dimensional temporal sub-
space from a subset of low spatial‐frequency k‐space data 
points, which were sampled for all of the time points, as op-
posed to using SVD of the dictionary itself. In general, this 
approximation reduces the computation time and improves 
the image quality, however, at the expense of potentially bi-
asing the results against a high‐frequency component such 
as an isolated small tumor or edge.

4.4 | Partial volume effect
Assessment of the partial volume effect is another area in 
which the MRF framework has been applied to quantitatively 
evaluate multiple components consisting of a single voxel. 
Ma et al16 presented an approach in which it is assumed that 
the basis tissue components are known a priori and only the 
weights for the corresponding tissue components vary from 
voxel to voxel across the imaging volume. Mathematically, 
the signal from a voxel can be written as

where Svoxel is the measured signal time course of the voxel, 
Diis the signal evolution of the ith basis tissue component 
(generally 3 or 4 components), and wi is the corresponding 
weight. One approach to estimate the weights for each tissue 
component is by solving Equation 5 using the pseudoinverse 
to calculate for the weights.16 Another approach is to generate 
a new partial volume dictionary in which the atoms consist of 
various volume fraction combinations of signal evolutions of 
the basis tissue components. In this way, the volume fractions 
for the basis tissue components are treated as the unknown 
“tissue properties” instead of the underlying T1 and T2.

97 
Pattern recognition was used to match the measured voxel 
signal with atoms of the partial volume dictionary to esti-
mate unknown volume fractions.97 The validation of both the 
approaches were performed using numerical phantom sim-
ulations to evaluate the effects of noise, undersamlping, tis-
sue variation, and model error.97-99 An alternative approach 
is not to assume that the basis tissue components are known 
a priori; thus, Di in Equation 5 represents the full dictionary. 
McGivney et al100,101 have proposed an approach to solve this 

highly underdetermined and ill‐conditioned inverse problem 
using a Bayesian statistical framework with a sparsity‐in-
ducing prior. The approach was evaluated using numerical 
simulations97,99-101 and in vivo data.99,101,102 Recently, Tang 
et al103 also presented an approach to solve the same inverse 
problem using a sparsity‐inducing penalty function through 
an approach based on iterative reweighted l1 norm regular-
ization of the weights (wi). The approach was evaluated in 
phantoms and in vivo brain data.

5 |  DISCUSSION

Reproducibility is an important aspect for quantitative imag-
ing. The reproducibility of MRF has been thoroughly vali-
dated in the work by Jiang et al.104 In this study, the authors 
applied the FISP‐MRF sequence to repeatedly quantify T1 
and T2 of a reference phantom. The measurements were re-
peated for 34 consecutive days and compared with the values 
obtained through SE‐based standard methods. For this study, 
the National Institute of Standard Technologies/International 
Society for Magnetic Resonance in Medicine MRI sys-
tem phantom was used, which was specifically designed for 
quantitative imaging with several layers of varying T1 and T2 
values.105 It was shown that variation in the measured MRF 
values throughout the 34 days was below 5%, except for in 
spheres with very short T2 values (below 13 ms) in which 
the variation was below 8% (Figure 11). Additionally, other 
evaluations of repeatability such as test‐retest, intrascanner, 
interscanner, variability across different scanner types, and 
variability across different sites is ongoing work. The authors 
firmly believe that measurements such as these should be a key 
part of any future MRF work. Without consistent results across 
multiple days and even multiple scanners, these methods will 
fail to make any significant impact on clinical medicine.

The MRF framework provides many degrees of freedom 
and a large amount of flexibility in the design of acquisition 
and sequence parameters, making the design and optimi-
zation of these parameters a challenging problem. Most of 
the methods described in this paper were heuristically opti-
mized. Optimization of acquisition and sequence parameters 
is an open question and active area of research with multiple 
groups focusing on the problem. Recent works have explored 
optimization through improvement in incoherence of simu-
lated dictionary fingerprints,106,107 Cramer‐Rao bound,108-110 
genetic algorithm,111 and Monte Carlo–based sequence sim-
ulations107,111 based approaches.

Another aspect that is flexible in the MRF framework 
is the k‐space sampling pattern. In general, the design and 
selection of the sampling trajectory is performed based 
on factors such as sampling efficiency, sensitivity to sys-
temic effects and imperfections, and the spatial incoher-
ence of undersampling artifacts. Non‐Cartesian trajectories 

(5)Svoxel =

∑

i

Diwi
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such as spirals provide high k‐space sampling efficiency 
and present spatially incoherent undersampling artifacts; 
however, they are highly sensitive to gradient nonlineari-
ties and physical effects such as eddy currents, which af-
fect the k‐space position of the sampled data. In practice, 
the trajectories are either separately measured112 or antic-
ipated based on model and scanner specific parameters.113 
Additionally, these effects constrain the flexibility of the 
sequence with respect to variation in FOV and spatial reso-
lution. The radial trajectory design also presents incoherent 
undersampling artifacts and is less sensitive to errors due to 
systemic imperfections as compared with spiral trajectory. 
However, the radial trajectory has lower k‐space sampling 
efficiency compared with spiral trajectory; thus, it requires 
multiple repetitions of the MRF acquisition cycle or tempo-
ral averaging through k‐space view sharing. The Cartesian 
trajectory is the most stable with respect to errors due to 
system imperfection; however, it presents the lowest spatial 
incoherence of undersampling artifacts and low sampling 
efficiency. Echo planar imaging can present an alternative 
option19,37 that improves upon Cartesian with relatively 

higher sampling efficiency, although at the expense of in-
creased sensitivity to errors due to system imperfections. 
The temporal reordering of the sampling trajectory is de-
signed such that the undersampling artifacts are spatio‐
temporally incoherent. Additionally, the undersampling 
artifacts should also be temporally incoherent to the tem-
poral subspace spanned by the dictionary fingerprints. For 
example, a golden angle–based reordering might be a more 
suitable acquisition for smoothly varying signal evolutions 
such as seen in FISP‐MRF, whereas a linear reordering 
is more suitable for acquisitions with fast varying signal 
evolutions, such as bSSFP‐MRF. Finally, applications in 
which measured properties present low signal sensitivity, 
such as perfusion19 or vascular properties,21 have used no 
undersampling as a means of simplification and out of the 
concern of propagation of errors.

Although MRF presents a new framework, it shares sim-
ilarities with other quantitative MR approaches. Some of the 
components of MRF have been previously used independently 
across different frameworks. For example, an overcomplete 
dictionary was used by Doneva et al89 for acceleration of 

F I G U R E  1 1  Measured values of T1 (A) and T2 (B) from 13 different spheres of the National Institute of Standard Technologies phantom 
over 34 consecutive days. Repeatability of T1 (C) and T2 (D) for each sphere expressed as the SD normalized by the mean T1 and T2 value for each 
sphere (images reprinted with permission from Jiang et al104) 
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property mapping through a CS framework. Pseudo‐ran-
domness and incoherence are both key components of the 
CS framework. Multiple other methods13-15,32 have looked 
at simultaneous estimation of multiple properties. A few of 
the differences and key innovations of the MRF framework 
are variation of multiple acquisition parameters to simulta-
neously probe multiple tissue properties, pattern recognition, 
and combination of all of the subcomponents to formulate 
a complete framework. However, the MRF framework may 
not be the ideal option if the specific clinical question needs 
either estimation of a single property or a qualitative evalu-
ation, as there are existing techniques that have been thor-
oughly optimized and validated to address these questions.

6 |  CONCLUSIONS

In summary, MRF is a general and flexible framework that 
allows measuring several tissue properties with a single, 
time‐efficient acquisition. The framework is compatible with 
a wide variety of acquisition strategies (Table 3), such as 
bSSFP, FISP, RF‐spoiled GRE, GRE sampling of the FID and 
SE sequence, QUEST, or their combinations. Additionally, 
it is also compatible to a wide variety of readout strategies 
such as spiral, radial, and EPI. This flexibility has enabled 
the application of MRF for imaging brain, heart, musculo-
skeletal system, and abdomen. Magnetic resonance finger-
printing has also shown feasibility of probing and achieving 
simultaneous measurement of a wide variety of properties 
such as T1, T2, T2

*, B0, perfusion, and cerebral blood volume. 
The reconstruction aspect of the MRF framework allows for 
high acceleration and is not limited to template matching or 
conventional pattern recognition. Several other approaches 
have been proposed to speed up the dictionary matching or to 
improve the acceleration. The repeatability studies also show 

that the MRF framework provides robust results through time 
and within different scans.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the sup-
porting information tab for this article.

FIGURE S1 (full version of Figure 3) Examples of k‐space 
sampling trajectories used by different MRF sequences. A, 
Variable density spiral. B, Trajectory generated from a music 
file (Yo Yo Ma playing Johann Sebastian Bach’s Cello Suite 
No. 1) for the MRF‐Music design. D, Radial. D, Cartesian. 
For each time point, the trajectory changes to generate un-
dersampling artifacts that are incoherent with the tissues 
fingerprints.
FIGURE S2 (full version of Figure 4) Summary of various 
parameter variations used by the different MRF frameworks. 
On the left side, the RF excitation patterns are expressed in 
degrees (except for the PnP‐MRF where the FA is expressed 
by the normalized voltage driving the 2 coil configurations, 
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in green and yellow). The right side shows the varying TR 
for the different time points (data for the PnP‐MRF were not 
available).
FIGURE S3 (full version of Figure 5) Example of in vivo 
comparison of the bSSFP‐MRF and the FISP‐MRF of 2 as-
ymptomatic volunteers acquired at 3 T. The first case is the 
result of a regular experiment, whereas in the second subject 
the shimming was intentionally corrupted to obtain severe B0 
inhomogeneity. In this situation, the bSSFP‐MRF presents 
banding artifacts, whereas the FISP‐MRF approach main-
tains a diagnostic image quality.
FIGURE S4 (full version of Figure 8) Example results illus-
trating different methods to reduce the effects of B1+ hetero-
geneities. A, Results using a separate B1+ measurement to 

correct the effects for a FISP‐MRF abdominal scan in a healthy 
human subject. B, Results using an MRF acquisition with in-
tegrated B1+ measurement to image an ex vitro rat brain. C, 
Results using a PnP‐MRF acquisition with 2 B1+ coil modes 
to image a phantom (images reprinted with permission from 
Chen et al,41 Buonincontri et al,43 and Cloos et al46).
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