Contrast material–enhanced myocardial perfusion imaging by using cardiac magnetic resonance (MR) imaging has, during the past decade, evolved into an accurate technique for diagnosing coronary artery disease, with excellent prognostic value. Advantages such as high spatial resolution; absence of ionizing radiation; and the ease of routine integration with an assessment of viability, wall motion, and cardiac anatomy are readily recognized. The need for training and technical expertise and the regulatory hurdles, which might prevent vendors from marketing cardiac MR perfusion imaging, may have hampered its progress. The current review considers both the technical developments and the clinical experience with cardiac MR perfusion imaging, which hopefully demonstrates that it has long passed the stage of a research technique. In fact, cardiac MR perfusion imaging is moving beyond traditional indications such as diagnosis of coronary disease to novel applications such as in congenital heart disease, where the imperatives of avoidance of ionizing radiation and achievement of high spatial resolution are of high priority. More wide use of cardiac MR perfusion imaging, and novel applications thereof, are aided by the progress in parallel imaging, high-field-strength cardiac MR imaging, and other technical advances discussed in this review.
A survey of the National Library of Medicine’s PubMed database with the keywords “myocardial perfusion” and “magnetic resonance” reveals a steadily increasing number of publications during the past decade, which points toward progress of the field but still amounts to less than 30% of publications, if studies based on nuclear imaging, such as single photon emission computed tomography (SPECT) and positron emission tomography (PET), are included in the search. This dynamic growth has also led to a plethora of techniques and approaches for assessing myocardial perfusion with magnetic resonance (MR) imaging. The field continues to advance rapidly due to the introduction of new approaches for accelerating MR image acquisition, improving signal-to-noise ratio (SNR) and contrast-to-noise ratio, and migrating to higher magnetic field strengths. The purpose of this review is to summarize the current state of myocardial perfusion imaging with use of cardiac MR, including recent technical advancements, and the published evidence pointing to its clinical benefits.

Coronary Physiology at Rest and during Hyperemia

The established physiologic rationale for stress perfusion imaging rests on the concept of coronary flow reserve (1). Coronary flow reserve refers to the capacity of the coronary circulation to increase blood flow through the coronary tree, when the perfusion bed is maximally dilated. In a clinical cardiac MR examination, coronary vasodilation is typically achieved with a pharmacological agent such as adenosine. Although other mechanisms such adrenergic stimulation, such, for example, through the cold pressor test, also result in some vasodilation and flow increase (2), adenosine receptor agonists such as adenosine cause, in healthy adult subjects, an up to four-fold increase of coronary flow and are particularly effective in minimizing the resistance of the distal coronary perfusion bed. Lowering of the distal coronary resistance can reveal the presence of flow-limiting lesions in the epicardial arteries. At rest, an epicardial lesion will become flow limiting only with a luminal narrowing of approximately 85% or higher, while with maximal vasodilation, this threshold is lowered to approximately 50% or higher (3, 4). The coronary flow response during vigorous exercise will be of the same magnitude as the increase observed during maximal vasodilation with an agent such as intravenous adenosine (5).

The determination of the coronary flow reserve entails a measurement of resting coronary flow and a second measurement during maximal vasodilation. Typically, a flow (or velocity) ratio is formed to quantify the coronary flow reserve (eg, through cine phase-contrast MR imaging, or invasively, with a Doppler wire). Flow and velocity can be used here interchangeably because flow represents the product of flow velocity times the lumen area (or the integral of velocity over the lumen area). In this review, we will describe cardiac MR methods for measuring a closely related quantity, the myocardial perfusion reserve. Perfusion refers here to the blood flow through the coronary microcirculation, meaning the volume of blood flowing through a volume, or mass unit of myocardium, per unit of time. Assuming that myocardial perfusion can be quantitated independently at rest and during maximal vasodilation, one can calculate the myocardial perfusion reserve, analogous to the coronary flow reserve, as the ratio of hyperemic flow divided by the resting flow. In a healthy coronary circulation, the coronary flow reserve and the myocardial perfusion reserve agree in magnitude, but with epicardial disease, the presence of coronary collaterals can result in an epicardial flow reserve, which is lower than the myocardial perfusion reserve measured downstream from the lesion (6). The myocardial perfusion reserve, rather than the coronary flow reserve, is, arguably, a closer and potentially more accurate measure of the capacity of the coronary circulation to deliver sufficient oxygen to a given region of interest in the heart muscle. An impaired myocardial perfusion reserve is therefore considered a useful surrogate marker for ischemia, although the threshold below which the myocardial perfusion reserve needs to decrease to cause clinically significant ischemia is not well defined. A coronary flow reserve threshold (2.5:1 in reference 7) has been used as cut-off, as it results in a significant association with risk factors, presence of coronary artery disease (CAD), or with patient outcomes after revascularization (7).

Principles of Myocardial Perfusion Imaging with Cardiac MR

The coronary flow reserve can be measured with cardiac MR imaging by means of direct visualization of the...
lumen of the proximal coronary artery and with quantification of blood flow velocity in the vessel lumen by using the phase-contrast technique (8). This remains a challenging type of examination due to cardiac and respiratory motion and the relatively small lumen dimensions (approximately 1.5–3 mm). Flow through the coronary microcirculation can only be assessed indirectly, either by labeling the blood and observing signal intensity changes resulting from the transit of the labeled blood or by introducing a blood-borne MR-detectable tracer and observing the injected tracer through the myocardium. The measurement of contrast enhancement during the first pass of a contrast agent bolus through the cardiac chambers and the myocardium is currently the most widely used and reliable technique to assess myocardial perfusion. It is often referred to as first-pass imaging. Cardiac perfusion studies with MR rely primarily on the use of T1-weighted techniques, while for brain perfusion it is more common to use T2*-weighted techniques. The reason lies in the difference in the distribution of the volume of gadolinium chelates, which normally cannot cross the blood-brain barrier, and the higher vascular volume in the heart compared with the brain. To track the first pass of a contrast agent bolus through the cardiac chambers and myocardium, while freezing cardiac motion, one applies dynamic imaging techniques that allow acquisition of an image during a fraction of a heartbeat, which is repeated every heartbeat during the first pass and ideally covers a stack of sections through the heart. Figure 1 is a conceptual illustration of the principle of contrast material-enhanced, first-pass perfusion imaging.

An alternative approach is based on labeling blood as an endogenous tracer by applying a spatially selective inversion preparation and tracking the signal changes that result from the flow of the inverted spins in or out of an adjacent region (9). This method has given rise to a slew of techniques, referred to as arterial spin labeling, but their use in the heart remains limited and almost absent in clinical settings because of confounding effects of cardiac motion and the relative modest signal changes achievable with spin labeling (10,11).

Cardiac MR Pulse Sequence Techniques

A survey of pulse sequence techniques that are used for contrast-enhanced myocardial perfusion imaging (first-pass imaging) could start off with an identification of its key components. They are T1 contrast enhancement characteristics and image readout, with image readout defined as the ensemble of radiofrequency excitations and gradient pulses for image encoding performed for acquisition of an image. With most pulse sequence techniques for first-pass imaging, these two aspects are dealt with by first applying a magnetization preparation for T1 weighting followed by image readout. The magnetization preparation can be a saturation preparation (12), which by definition nulls the bulk longitudinal and dephases the transverse magnetization components, or an inversion preparation. The image readout, mostly in the form of sequential two-dimensional acquisitions for multiple sections, follows magnetization preparation, with a possible delay that controls the T1 weighting of the measured signal. For the image readout, the primary concerns are the time it takes to read out the image, the SNR, a lack of motion artifacts or susceptibility artifacts, and a need to preserve the T1 weighting introduced by the magnetization preparation that precedes the image readout. Although motion artifacts can be reduced already by virtue of fast image readout, the readout of the signal can, even with very fast image readout, be corrupted by motion if one uses a long echo time. Therefore, one of the fastest image acquisition methods, the echo-planar technique (13), is seldom used in its “unsegmented” form for myocardial perfusion imaging, but rather in a hybrid form, with echo-train lengths typically of five to six echoes or fewer after each radiofrequency pulse (14). Also the transit of a contrast agent bolus through the ventricular cavities can cause susceptibility artifacts (in particular at higher field strength) (15) and a shift of the proton resonance frequency (16) in adjacent regions, which suggests that techniques sensitive to magnetic susceptibility effects and/or frequency shifts (eg, steady-state free precession imaging) should be avoided. For any quantitative analysis of myocardial perfusion, special consideration must be given to the contrast enhancement in the blood pool. The arterial contrast enhancement should be sampled without too much saturation, that is, the contrast enhancement should be in approximately linear relation to the concentration of a contrast agent in the blood. To address this requirement, the “dual bolus” (17) and “dual contrast” were introduced (18). Table 1 summarizes the sequence techniques that are most commonly used for myocardial perfusion imaging.

Figure 2 illustrates the cardiac MR stress protocol that we are currently using at our institution. In a myocardial perfusion study, the images are acquired during approximately 60 heartbeats to cover a precontrast phase, the first pass of the contrast agent after its injection, and the recirculation of contrast agent. The total acquisition time is too long for a single breath hold, although patients are typically asked to hold their breath for the initial phase of the study and resume breathing when necessary, without having to take a deep breath. Breathing motion is sufficiently slow that it does not cause motion artifacts, but during postprocessing it becomes necessary to correct for cardiac motion, and through-plane motion causes section misregistration. As an alternative, section-tracking techniques have been developed that use a navigator pulse to track diaphragmatic motion and dynamically adjust the section positions so that the same anatomic region is tracked during the entire perfusion imaging (19,20). It may well be that automatic image postprocessing techniques prove more effective in coping with the correction for in-plane breathing motion (21), but full-motion correction by postprocessing (including through-plane motion) would...
Figure 1: (a) Frames 1–4 acquired during adenosine-induced hyperemia in a 64-year-old woman with CAD as part of first-pass perfusion study with a saturation-recovery-prepared gradient-echo sequence covering four sections during each heartbeat. A 0.05 mmol/kg bolus of gadolinium-based contrast agent was injected during approximately three heartbeats after the start of image acquisition by using a power injector (4 mL/sec injection rate). The graph shows signal intensity (SI) changes in anterior and inferior myocardial sectors, with the latter showing reduced myocardial enhancement. The linear rate of contrast enhancement (up-slope) is a parameter sensitive to myocardial blood flow differences. a.u. = arbitrary units. (b) For postprocessing, the perfusion MR images are segmented (left) along endo- and epicardial borders (solid contours). The left ventricular wall is subdivided into six segments, using the anterior left ventricular-right ventricular junction as reference point. Signal intensity curves are generated for each pixel location. Pixel locations were tracked over all images by their transmural (distance between endo- and epicardial contours) and circumferential (angle from reference point) coordinates. The parametric map (right) shows the spatial variation of the color-encoded up-slope parameter.

Imaging Acceleration and Sparse Sampling

Image acceleration techniques have had a strong, positive impact on cardiac perfusion imaging and allowed improvement in section coverage or temporal resolution (22). These developments started out with parallel imaging techniques, which take advantage of variations in the spatial sensitivity profiles of coil elements in a phased array to reduce the number of spatial phase-encoding steps.

Another type of acceleration technique, long known in MR imaging, is based on acquisition of a subset of spatial-encoding steps for every image, with the encoding steps typically clustered around low spatial frequencies (low k-space), as they provide a low resolution approximation to the target image. Higher spatial frequencies are sampled or updated less frequently. This type of technique was initially introduced under the label of “keyhole” technique (23). Arguably, it never found much acceptance for myocardial perfusion imaging, but it paved the way, in combination with parallel imaging techniques, for more advanced methods, such as k-space and time (k-t) broad-use linear acquisition speed-up technique (BLAST) (24,25) and k-t generalized autocalibrating partially parallel acquisition (GRAPPA) (26–28). These technical developments for imaging acceleration are available on all new imagers with dedicated cardiac MR application packages and phased-array coils for cardiac imaging, though myocardial perfusion imaging with cardiac MR was feasible and used without access to parallel imaging techniques, albeit with heart coverage limited to two to three sections per heartbeat.

SNR and contrast-to-noise ratio are one of the limiting factors for speed-ups
in image acquisition, including the use of parallel imaging techniques, which involve trading off shorter acquisition times against a decrease in SNR (29). Performance of cardiac perfusion MR imaging at higher field strengths improves SNR, but at 3 T the choice of perfusion imaging techniques becomes more limited, as susceptibility and off-resonance artifacts grow more severe with increasing field strength. The demands on magnetization preparation methods also become more taxing (30). A study in 61 patients found that 3-T cardiac MR perfusion imaging is superior to imaging at 1.5 T for prediction of significant single- and multivessel coronary disease (29).

Future Technical Directions

Though 3D image acquisitions offer better SNR and can potentially achieve complete coverage of the heart without section misregistration, they are still seldom used for cardiac perfusion imaging due to some inherent limitations in preventing blurring and artifacts from cardiac motion. With a two-dimensional, multisection technique, images are acquired during different phases of the cardiac cycle, but the acquisition of each two-dimensional image only takes a fraction of a heartbeat (~100–200 msec), and therefore cardiac motion is effectively frozen. For the 3D technique, encoding in the section direction is no longer spatially localized, and therefore motion during the entire 3D acquisition is reflected in the reconstructed sections. The constraint to acquire all data for a selected slab in a 3D acquisition in a fraction of a heartbeat is therefore not that different from a two-dimensional acquisition, but the total number of encoding steps is an order of magnitude larger. To overcome this limitation, for 3D cardiac perfusion imaging it will therefore require higher image acceleration, on the order of approximately 10 or higher (31). Such high image acceleration factors currently represent a substantial challenge and are an impediment to the use of 3D techniques for cardiac perfusion imaging.

Within the past couple of years, a surprising development was initiated by the theory of compressed sensing, developed by Candès and Wakin (32) and Lustig et al (33). For decades, the Nyquist theorem formed one of the pillars of signal-processing theory, until it was realized that for band-limited signals, one could sample at a rate lower than prescribed by the Nyquist theorem if the signal had a sparse representation. A familiar example for a sparse representation is the JPEG (Joint Photographic Experts Group) image-encoding method, which can result in 80%–90% reduction in data size without causing appreciable image degradation. Compressive sampling is, loosely speaking, a generalization: Random subsets of the signal or image data are acquired in a sampling space (eg, k-space in the case of MR imaging), with some a priori assumptions about how the images could be given a sparse representation with a particular type of encoding. Compressive sensing carries considerable promise for further acceleration of myocardial perfusion imaging (34) and can be combined with parallel imaging acceleration for further gains.

Another promising technique is highly constrained back-projection reconstruction, or HYPR (35), which involves acquisition of a highly reduced (eg, by factor of four or higher) subset of radial projections during each cardiac cycle so that a full set of radial projections is updated at a much slower rate (eg, over four cardiac cycles). A composite image is constructed from the full set of radial projections and used to constrain the reconstruction of images for each cardiac cycle from

Table 1

<table>
<thead>
<tr>
<th>Technique Acronyms</th>
<th>Description</th>
<th>Typical Parameters and Advantages</th>
<th>Image Acquisition Time/Parallel Imaging</th>
<th>Limitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbo FLASH, turbo fast field echo, GRASS</td>
<td>GRE image acquisition with short TR and TE and magnetization preparation (saturation or inversion)</td>
<td>TR/TE msec, 3/1; 15° flip angle; 2D multisection; 8–10-mm sections; bandwidth, 600–800 Hz per pixel; nonsection-selective SR; relative immune against off-resonance and susceptibility effects</td>
<td>150–200 msec per section/two</td>
<td>Image acquisition speed slower than SSFP and hybrid EPI-GRE; low CNR and SNR compared with SSFP</td>
</tr>
<tr>
<td>Turbo SSFP, turbo balanced field echo, turbo FIESTA</td>
<td>SSFP acquisition with magnetization preparation (saturation or inversion)</td>
<td>2/1/; 40° flip angle; 2D multisection; 8-mm sections; bandwidth, 1000–12,000 Hz per pixel; SR; high CNR</td>
<td>130–160 msec per section/two to three</td>
<td>Off-resonance artifacts; bolus-induced frequency shifts; not suitable for > 1.5 T</td>
</tr>
<tr>
<td>Hybrid EPI-GRE</td>
<td>2D multisection, hybrid EPI-GRE acquisition with echo-train length of less than 6 and magnetization preparation</td>
<td>8/3; 15° flip angle; 8–10-mm sections; bandwidth, 600–800 Hz per pixel; shortest image acquisition time</td>
<td>100–150 msec per section/two</td>
<td>Susceptibility artifacts with long echo trains; echo-train length less than approximately 3 for 3 T</td>
</tr>
</tbody>
</table>

Note.—CNR = contrast-to-noise ratio, EPI = echo-planar imaging, FLASH = fast low-angle shot, GRASS = gradient refocused acquisition in steady state, GRE = gradient echo, SR = saturation preparation, SSFP = steady-state free precession, TE = echo time, TR = repetition time, 2D = two-dimensional.
REVIEW: Myocardial Perfusion MR Imaging

Coelho-Filho et al

used agents for cardiac perfusion studies. Intravascular agents have been used in experimental studies, but almost never in patient studies. There is some evidence from animal studies that the conspicuity of a perfusion defect can be observed longer with an intravascular contrast agent (38). This may reflect the reduced perfused vascular volume distal to a coronary stenosis.

When an injected tracer is used to demonstrate a blood flow deficit due to a flow-limiting epicardial lesion or microvascular dysfunction, it is paramount to inject the tracer sufficiently fast so that the injection is not the rate-limiting step for myocardial contrast enhancement. This entails the use of a contrast agent with peripheral venous injection rates of 3–4 mL/sec, in particular during pharmacological stress, when myocardial contrast enhancement is most likely to be constrained by the rate of contrast material injection.

Postprocessing and Quantification of Myocardial Perfusion

The clinically predominant mode of reading and interpreting myocardial perfusion studies is based on the visual interpretation of myocardial contrast enhancement when the perfusion images are displayed in cine mode. Regions with perfusion defects are characterized by a reduced rate of contrast enhancement. During early myocardial contrast enhancement such regions can be identified in cine frames by appearing hypointense. Playing the images in cine mode is essential for differentiating between image artifacts (in particular, so called dark-rim artifacts at the endocardial border) and true perfusion defects (39). A key distinguishing feature between dark-rim artifacts and true perfusion defects is the number of frames during which the signal hypointensity can be observed, with artifacts typically only appearing in a couple of frames during peak contrast enhancement in the blood pool and before peak contrast enhancement in the myocardial tissue. It has been shown that the prominence of such

Figure 2: Stress MR myocardial perfusion study in 67-year-old woman with exertional chest pain who was referred for ischemia assessment. A, Stress and, B, rest first-pass perfusion images show ischemia in anterolateral wall and a fixed defect in the inferolateral walls (no stenosis) (arrows). C, D, Late gadolinium enhancement images show a nearly transmural myocardial infarction in the inferolateral wall (arrow) and viable myocardium everywhere else. E, F, Subsequent coronary angiograms ordered at the discretion of the referring physician show, E, critical luminal narrowing (arrow, >70%) in left anterior descending coronary artery and, F, no critical stenosis in the right coronary artery. LV = left ventricle, RV = right ventricle.

Contrast Agents and Their Administration for Cardiac Perfusion Studies

Gadolinium chelates such as gadopentetate dimeglumine, which can distribute within the extracellular space of myocardial tissue, are the most widely

the highly reduced subsets of radial projections. HYPR has been applied successfully for myocardial perfusion studies, and the images were shown to have better SNR and better spatial resolution than conventional myocardial perfusion images (36,37).
artifacts can be reduced by increasing the spatial resolution in the phase-encoding direction (ie, increasing the number of phase-encoding steps), as this minimizes a well-known artifact from Fourier reconstruction (Gibbs artifact), which is thought to play an important role in the appearance of the dark-rim artifact (39).

A quantitative analysis of the myocardial perfusion is based on deriving parameter values from a time series of regional signal intensity values. The regions for such an analysis can be based on the definition of myocardial sectors (eg, standardized 17-segment model) or represent myocardial pixels to derive maps of myocardial perfusion with a spatial resolution equivalent to the underlying spatial resolution of the images (40–42). Both the sector- and pixel-based analyses require that the endo- and epicardial borders of the left ventricular wall be detected or traced for each image frame of a perfusion study, a task that still relies, to a large degree, on user intervention and represents the most time-consuming step of a quantitative analysis. Once this has been accomplished, the subsequent analysis algorithms can be derived mostly without any further user intervention, parameters that relate to the rate of contrast enhancement, or the relative or absolute myocardial blood flow. The details of such an analysis are beyond the scope of this review and can be found in various references (17,43–47).

Myocardial Perfusion Imaging for Diagnosis of CAD

A substantial number of single-center (13,30,48,49) and multicenter (50,51) studies have confirmed the excellent sensitivity and specificity of myocardial perfusion imaging with vasodilator stress for the detection of CAD. These findings have been translated into steadily increasing clinical applications. Stress myocardial perfusion is a feasible, useful, and efficient tool for routine CAD diagnosis, with an example shown in Figures 3 and 4. In a multicenter study, Schwitter et al (32), using multivendor imagers and five different doses of gadopentetate dimeglumine, compared the diagnostic performance of stress myocardial perfusion cardiac MR with that of nuclear scintigraphy in detecting significant CAD. They reported that 0.1 mmol/kg of gadopentetate dimeglumine yielded the highest accuracy in depicting CAD, defined as greater than 50% luminal narrowing in at least one vessel. On the basis of the receiver operating characteristic (ROC) analysis, Schwitter et al proved the noninferiority of stress myocardial perfusion cardiac MR to gated SPECT for CAD diagnosis (area under the ROC curve [AUC], 0.89 ± 0.06 vs 0.70 ± 0.06; P < .05). However, for multivessel CAD or if ungated SPECT studies were included, myocardial perfusion cardiac MR performed better than SPECT (multivessel disease: AUC, 0.89 ± 0.06 vs 0.70 ± 0.06, P < .05; at least one vessel disease: AUC, 0.86 ± 0.06 vs 0.67 ± 0.06; P < .05). Two recent meta-analyses (53,54) have confirmed the excellent diagnostic performance of stress myocardial perfusion cardiac MR in detection of significant CAD. Hamon and colleagues (54) combined data from more than 11,000 patients in 26 different studies to demonstrate an overall patient-based sensitivity of 0.89 (95% confidence interval [CI]: 0.88, 0.91) and specificity of 0.80 (95%...
Coelho-Filho et al

REVIEW: Myocardial Perfusion MR Imaging

Coelho-Filho (79) and colleagues demonstrated that stress myocardial perfusion cardiac MR may be an effective alternative to achieving sex equality in diagnosing CAD and in risk stratification for cardiovascular imaging. In a relatively large cohort of women and men, there were no significant sex differences for diagnosing CAD or for risk stratification of major adverse cardiovascular events by using stress myocardial perfusion cardiac MR imaging. A recently published expert consensus document on cardiac MR imaging (80) ranked stress myocardial perfusion cardiac MR as a primary form of testing for (a) identifying patients with ischemic heart disease when there are resting electrocardiographic abnormalities or they have inability to exercise, (b) identifying patients with large-vessel CAD and its distribution who are candidates for interventional procedures, or (c) identifying patients who are appropriate candidates for interventional procedures. This suggests that stress myocardial perfusion cardiac MR is more than an effective alternative for diagnosing CAD and is increasingly viewed as a powerful cardiac prognostication tool in patients with chest pain patients and those suspected of having CAD (81–83).

CI: 0.78, 0.83) for detection of CAD. Adenosine stress testing had better sensitivity for diagnosing CAD than did dipyridamole (0.90; 95% CI: 0.88, 0.92 vs 0.86, 95% CI: 0.80, 0.90; P = .022) and a tendency to a better specificity (0.81, 95% CI: 0.78, 0.84 vs 0.77, 95% CI: 0.71, 0.82; P = .065). Table 2 presents the diagnostic performance of stress myocardial perfusion cardiac MR imaging in selected studies. Stress myocardial perfusion data also correlate strongly with invasive coronary blood flow measurement by fractional flow reserve, reinforcing its clinical application in the diagnosis and treatment planning of CAD.

Compared with nuclear techniques and the recently developed stress multidetector computed tomography (CT), stress myocardial perfusion cardiac MR imaging allows integration of myocardial perfusion imaging with a comprehensive assessment of biventricular function, regional function (wall thickening or strain imaging), and edema and infarction imaging, all at high spatial resolution and tissue contrast.

Special Populations

Myocardial perfusion cardiac MR is ideally suited to resolve imaging challenges posed by particular patient populations. In women, breast attenuation artifacts, smaller-sized hearts, and limited exercise tolerance may limit noninvasive CAD detection (84–86). Stress myocardial perfusion cardiac MR imaging allows high-resolution images for assessment of myocardial ischemia at high tissue contrast without exposing patients to radiation. Klem et al (73) found excellent sensitivity and specificity (0.84 and 0.88, respectively) in women, confirming the usefulness of stress myocardial
perfusion cardiac MR in this challenging population. Myocardial perfusion cardiac MR also provides insight into the physiopathology of chest pain with normal epicardial coronary arteries, a vexing clinical problem commonly present in women. Panting et al (87) identified subendocardial myocardial hypoperfusion during adenosine infusion in mostly female patients with chest pain and no epicardial coronary stenosis (syndrome X), and Doyle et al (53) reported a reduced transmural perfusion reserve in a similar class of patients. A reduced myocardial or coronary flow reserve was also reported in hypertension and myocardial hypertrophy (88,89) and with some cardiomyopathies (90). Therefore, myocardial stress perfusion cardiac MR helps identify an abnormal coronary microcirculation to explain the symptoms, even if the precise mechanism cannot be elucidated. Possible explanations range from impaired smooth muscle function to a reduced capillary density and endothelial dysfunction.

Myocardial Perfusion Imaging for Prognosis in CAD

Growing evidence indicates that myocardial perfusion cardiac MR can provide strong prognostic information about cardiac events in various clinical scenarios, which has supported its more widespread use in patient care. Ingkanison et al (81) demonstrated that an adenosine perfusion cardiac MR study can determine prognosis in patients presenting with chest pain, a nondiagnostic electrocardiogram, and negative serum biomarkers for myocardial infarction. In such patients, a negative stress perfusion cardiac MR examination was associated with an excellent negative predictive value for subsequent diagnosis of CAD or an adverse clinical outcome. No patient with a normal stress perfusion cardiac MR examination experienced a major adverse cardiac event during follow-up. In a cohort of 513 patients suspected of having myocardial ischemia, Jahnke et al (91) examined the value of stress myocardial perfusion cardiac MR to help predict cardiac death and nonfatal myocardial

Table 2

Characteristics of a Selective List of Studies of the Diagnostic Performance of Stress Myocardial Perfusion MR Imaging

<table>
<thead>
<tr>
<th>Author and Year*</th>
<th>No. of Patients</th>
<th>Criterion for Significant CAD</th>
<th>Stress Agent</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schwitter et al, 2001 (48)</td>
<td>48</td>
<td>Stenosis ≥ 50%</td>
<td>Dipyridamole</td>
<td>0.86</td>
<td>0.80</td>
</tr>
<tr>
<td>Doyle et al, 2003 (55)</td>
<td>229</td>
<td>Stenosis ≥ 70%</td>
<td>Dipyridamole</td>
<td>0.58</td>
<td>0.78</td>
</tr>
<tr>
<td>Ishida et al, 2003 (56)</td>
<td>104</td>
<td>Stenosis > 70%</td>
<td>Dipyridamole</td>
<td>0.90</td>
<td>0.85</td>
</tr>
<tr>
<td>Nagel et al, 2003 (57)</td>
<td>90</td>
<td>Stenosis < 75%</td>
<td>Adenosine</td>
<td>0.88</td>
<td>0.90</td>
</tr>
<tr>
<td>Giang et al, 2004 (51)</td>
<td>94</td>
<td>Stenosis ≥ 50%</td>
<td>Adenosine</td>
<td>0.87</td>
<td>0.86</td>
</tr>
<tr>
<td>Kawase et al, 2004 (58)</td>
<td>50</td>
<td>Stenosis > 70%</td>
<td>Nicorandil</td>
<td>0.94</td>
<td>0.94</td>
</tr>
<tr>
<td>Paetsch et al, 2004 (59)</td>
<td>79</td>
<td>Stenosis ≥ 50%</td>
<td>Adenosine</td>
<td>0.91</td>
<td>0.62</td>
</tr>
<tr>
<td>Plein et al, 2004 (60)</td>
<td>72</td>
<td>Stenosis ≥ 70%</td>
<td>Adenosine</td>
<td>0.88</td>
<td>0.83</td>
</tr>
<tr>
<td>Takase et al, 2004 (61)</td>
<td>102</td>
<td>Stenosis ≥ 50%</td>
<td>Dipyridamole</td>
<td>0.93</td>
<td>0.85</td>
</tr>
<tr>
<td>Thiele et al, 2004 (62)</td>
<td>20</td>
<td>Stenosis ≥ 70%</td>
<td>Adenosine</td>
<td>0.75</td>
<td>0.58</td>
</tr>
<tr>
<td>Plein et al, 2005 (63)</td>
<td>92</td>
<td>Stenosis > 70%</td>
<td>Adenosine</td>
<td>0.88</td>
<td>0.74</td>
</tr>
<tr>
<td>Sakuma et al, 2005 (64)</td>
<td>40</td>
<td>Stenosis > 70%</td>
<td>Dipyridamole</td>
<td>0.81</td>
<td>0.68</td>
</tr>
<tr>
<td>Curé et al, 2006 (65)</td>
<td>47</td>
<td>Stenosis ≥ 70%</td>
<td>Dipyridamole</td>
<td>0.93</td>
<td>0.64</td>
</tr>
<tr>
<td>Klem et al, 2006 (66)</td>
<td>100</td>
<td>Stenosis ≥ 70%</td>
<td>Adenosine</td>
<td>0.84</td>
<td>0.58</td>
</tr>
<tr>
<td>Pilz et al, 2006 (66)</td>
<td>176</td>
<td>Stenosis ≥ 70%</td>
<td>Adenosine</td>
<td>0.96</td>
<td>0.83</td>
</tr>
<tr>
<td>Merkle et al, 2007 (67)</td>
<td>228</td>
<td>Stenosis ≥ 70%</td>
<td>Adenosine</td>
<td>0.96</td>
<td>0.72</td>
</tr>
<tr>
<td>Cheng et al, 2007 (29)</td>
<td>65</td>
<td>Stenosis ≥ 50%</td>
<td>Adenosine</td>
<td>0.90</td>
<td>0.67</td>
</tr>
<tr>
<td>Greenwood et al, 2007 (68)</td>
<td>35</td>
<td>Stenosis ≥ 70%</td>
<td>Adenosine</td>
<td>0.72</td>
<td>1.0</td>
</tr>
<tr>
<td>Seeger et al, 2007 (59)</td>
<td>51</td>
<td>Stenosis ≥ 70%</td>
<td>Adenosine</td>
<td>0.92</td>
<td>0.85</td>
</tr>
<tr>
<td>Gebker et al, 2008 (37)</td>
<td>101</td>
<td>Stenosis ≥ 50%</td>
<td>Adenosine</td>
<td>0.90</td>
<td>0.71</td>
</tr>
<tr>
<td>Meyer et al, 2008 (70)</td>
<td>60</td>
<td>Stenosis ≥ 70%</td>
<td>Adenosine</td>
<td>0.89</td>
<td>0.79</td>
</tr>
<tr>
<td>Pilz et al, 2008 (71)</td>
<td>22</td>
<td>Stenosis > 70%</td>
<td>Adenosine</td>
<td>0.92</td>
<td>1.0</td>
</tr>
<tr>
<td>Schwitter et al, 2008 (52)</td>
<td>225</td>
<td>Stenosis ≥ 50%</td>
<td>Adenosine</td>
<td>0.85</td>
<td>0.67</td>
</tr>
<tr>
<td>Klein et al, 2008 (72)</td>
<td>54</td>
<td>Stenosis ≥ 50%</td>
<td>Adenosine</td>
<td>0.87</td>
<td>0.88</td>
</tr>
<tr>
<td>Klem et al, 2008 (73)</td>
<td>147</td>
<td>Stenosis ≥ 70%</td>
<td>Adenosine</td>
<td>0.84</td>
<td>0.88</td>
</tr>
<tr>
<td>Thomas et al, 2008 (74)</td>
<td>60</td>
<td>Stenosis ≥ 50%</td>
<td>Adenosine</td>
<td>0.93</td>
<td>0.84</td>
</tr>
<tr>
<td>Burgstahler et al, 2008 (75)</td>
<td>23</td>
<td>Stenosis ≥ 70%</td>
<td>Adenosine</td>
<td>1.0</td>
<td>0.80</td>
</tr>
<tr>
<td>Arnold et al, 2010 (76)</td>
<td>65</td>
<td>Stenosis > 50%</td>
<td>Adenosine</td>
<td>0.90</td>
<td>0.81</td>
</tr>
<tr>
<td>Manka et al, 2010 (77)</td>
<td>41</td>
<td>Stenosis ≥ 50%</td>
<td>Adenosine</td>
<td>0.92</td>
<td>0.75</td>
</tr>
<tr>
<td>Lockie et al, 2011 (78)</td>
<td>42</td>
<td>Fractional flow reserve < 0.75</td>
<td>Adenosine</td>
<td>0.82</td>
<td>0.94</td>
</tr>
</tbody>
</table>

* Numbers in parentheses are reference numbers.
infarction. At 3 years, the event-free survival was 99.2% for patients with normal perfusion cardiac MR examination and 83.5% for those with abnormal perfusion examination. An abnormal myocardial perfusion cardiac MR examination was associated with an increased likelihood of death or nonfatal infarction over the risk estimated from clinical risk factors (likelihood ratio, χ² = 16.0–34.3, P < .001), clearly identifying patients at risk for future cardiac events. Our group has also demonstrated that stress myocardial perfusion cardiac MR provides complementary prognostic data beyond clinical factors and scar imaging at late gadolinium enhancement (83). In a consecutive cohort of patients referred for myocardial ischemia assessment with stress cardiac MR, an abnormal myocardial perfusion cardiac examination maintained a more than three-fold adjusted association with cardiac death or acute myocardial infarction. Further information regarding the optimal integration of stress perfusion cardiac MR in existing diagnostic strategies and how its prognostic information can be best utilized is expected from the upcoming IMPACT II and CE-MARC studies (91).

Novel Clinical Applications for Myocardial Perfusion Assessment

The assessment of myocardial blood flow with stress myocardial perfusion cardiac MR has the potential to detect structural and physiologic abnormalities beyond epicardial coronary disease such as adverse microvascular remodeling and coronary microvascular dysfunction. In patients with hypertrophic cardiomyopathy, reduced myocardial perfusion reserve particularly in the endocardium, as measured with stress myocardial perfusion cardiac MR imaging, has been shown to be present and to be associated with the magnitude of wall thickness and hypertrophy (92). While the severity of hypertrophy has been associated with the risk of sudden death, the underlying pathophysiological mechanism remains unclear. However, the association between impaired myocardial blood flow reserve and the magnitude of the hypertrophy suggests that coronary microvascular dysfunction may be involved in the increased risk of sudden death. Abnormal resting blood flow has also been reported in patients with idiopathic dilated cardiomyopathy who were found to have increased extracellular matrix remodeling as assessed with quantification of blood-tissue partition coefficient for the extracellular contrast (93). Recently Cook et al (94) demonstrated that a significant impairment in transmural perfusion reserve ratio is present in patients with aortic coarctation, both with and without any residual stenosis.

Cardiac MR perfusion imaging may potentially also play a role in depicting early adverse changes in the microcirculation as a result of cardiovascular risk factors. As part of the Multi-Ethnic Study of Atherosclerosis, it was shown that hyperemic myocardial blood flow response was attenuated in asymptomatic individuals with a greater coronary risk factor burden, in particular hypertension, and elevated blood lipid levels (95). In patients with diabetes and autonomic neuropathy, the vasodilator response was found to be significantly lower than that in patients with diabetes but without neuropathy (96). This and at least one other study (97) have suggested a link between sympathetic innervation of the heart and the coronary vasodilator response, when other traditional measures of cardiac function were within the normal range, and in the absence of any signs or symptoms of coronary disease.

Cardiac MR Perfusion in Pediatric Patients and Congenital Heart Disease

Though cardiac MR imaging in pediatric patients has become routine at many heart centers, its practice only seldom includes myocardial perfusion studies. The awareness about the indications for myocardial perfusion cardiac MR in pediatric patients may be lower than for CAD (98). Also, safety and cost concerns may hamper referrals of pediatric patients for MR studies, since sedation is required in very young children and infants (99). The safety of pharmacologic vasodilation has been extensively studied in adults with CAD, but the uniqueness and complexity of congenital heart defects may have led to additional reluctance to perform similar tests in pediatric patients.

Two potential applications of cardiac MR myocardial perfusion imaging in pediatric patients are (a) clinical indications for the detection of ischemia before medical therapy or revascularization and (b) detection of microvascular dysfunction in various congenital heart diseases. For the former, Figure 5 is an example from a 13-year-old female patient who presented with syncope, elevation of heart enzymes, and ST elevation in the left-sided precordial leads at exercise stress testing but only mild symptoms of angina pectoris. Cardiac MR with 3D reconstruction of the anatomy revealed a left coronary artery arising from the right coronary artery with an aberrant course between the main pulmonary artery and the aortic root (Fig 4a). Cardiac MR myocardial perfusion showed severe anterolateral ischemia (Fig 4b), with quantified stress perfusion of 1.4 mL/g/min in that region as opposed to 2.1 mL/g/min in the remote area and normal perfusion at rest. Viability and wall motion analysis at rest were normal. Heart catheterization confirmed the suspicion of a dynamic stenosis. Therefore, minimal invasive direct coronary artery bypass surgery was performed consecutively, resulting in normalized stress perfusion cardiac MR examination at follow-up 3 months later.

Other examples of first-pass cardiac MR perfusion imaging in children with clinical consequences have been reported for the Bland-White-Garland syndrome (or anomalous left coronary artery originating from the pulmonary artery [ALCAPA] syndrome), Kawasaki disease, coronary fistulas, and in patients with transposition of the great arteries after arterial switch operation (100). In the latter group, corrective surgery includes transfer of the coronary arteries. Coronary problems have been identified as a risk factor for acute and long-term sequelae (101,102).

The second group of possible indications for cardiac MR perfusion
studies in pediatric patients, the detection of microvascular dysfunction, is not yet established clinically, though the clinical implications for an individual patient or a patient group are increasingly appreciated (103). Findings of studies on hypertrophic cardiomyopathy in childhood have shown that individuals with early onset of the disease, in particular, develop wall hypertrophy, a known independent risk factor for sudden cardiac death in hypertrophic cardiomyopathy (103–106). Myocardial perfusion imaging in conjunction with cine MR imaging for the assessment of left ventricular wall thickness may be able to identify patients at risk (107).

We performed first-pass perfusion in patients with transposition of the great arteries after arterial switch operation (108) and in patients with hypoplastic left heart syndrome. Myocardial blood flow quantification showed a reduced global perfusion reserve in both patient groups, in accordance with a study by Hauser et al, who applied PET perfusion imaging to patients with transposition of the great arteries (109). Other interesting and important potential indications for a perfusion cardiac MR in children are metabolic diseases, such as diabetes mellitus, evaluation for signs of heart transplant rejection, and various conditions with pressure- or volume-overloaded left or right ventricles (eg, tetralogy of Fallot, aortic stenosis). Recently, Vogel-Claussen et al (110), utilizing cardiac MR, showed a significantly reduced right and left ventricular perfusion reserve in patients with pulmonary hypertension. The authors found that biventricular perfusion reserve inversely correlates with right ventricular workload and ejection fraction. Van Wolferen and colleagues (111) used MR imaging phase-contrast measurements to show that right coronary artery flow, but not left coronary artery flow, had a significantly smaller systolic-to-diastolic flow ratio compared with that in healthy control subjects. The systolic-to-diastolic flow ratio in the right coronary artery correlated inversely with the right ventricular pressure. In an experimental model of chronic right ventricular hypertrophy in swine, we were able to demonstrate a reduced myocardial perfusion reserve prior to right ventricular failure (112). Perfusion cardiac MR may help to improve our understanding of the underlying pathophysiology of the microvascular bed in congenital heart disease, which is arguably a prerequisite for developing new treatments.

Limitations

The commonly used gadolinium-based cardiac MR contrast agents currently do not have regulatory approval for any cardiac indication in the United States. This means that gadolinium-based agents are used off-label for cardiac perfusion imaging. Similarly, vendors of MR equipment are not allowed to market cardiac perfusion imaging techniques in the United States. Furthermore, the application of cardiac MR for ischemia detection during vasodilator stress would require pursuing two unapproved indications, and this regulatory hurdle has proved difficult to overcome.

The administration of vasodilator stress agents (eg, adenosine) in the MR imaging environment is considered more challenging than when other imaging modalities (eg, PET or SPECT) are used. A new vasodilator stress agent, regadenoson (113) (now approved by the Food and Drug Administration), has reduced symptom intensity and gives greater patient tolerance. It is delivered as a single bolus, which allows administration outside the magnet.

The number of centers currently performing cardiac MR perfusion imaging is arguably still limited by a lack of training opportunities in this area, and cardiac MR in general. The logistical hurdles for perfusion cardiac MR are related to operating in an environment with strong magnetic fields, requiring radiofrequency shielding of the imager, and limiting imaging of patients with certain types of
devices (eg, pacemakers and implantable cardiac defibrillators) that are generally unsuitable for this type of environment. Nevertheless, cardiac device manufacturers see sufficient potential in cardiac MR to have brought to market cardiac MR–compatible pacemakers and similar efforts are underway for implantable cardiac defibrillators. A new generation of short-bore 1.5- and 3-T magnets has removed most hurdles for placing such imagers into the cardiovascular imaging and/or catheterization laboratories. It can be argued that the logistics of cardiac MR perfusion imaging are no more onerous than those of nuclear imaging, with the important difference that in the latter case economies of scale and several decades of experience and trials have led to general acceptance of the logistical requirements. In several countries, reimbursement for cardiac MR studies, in general, and cardiac MR perfusion studies continues to be a barrier for wider clinical use. Furthermore, more efforts need be expanded to educate referring physicians and patients about the benefits of clinical cardiac MR imaging.

In conclusion, a comprehensive cardiac MR study provides high accurate assessment of myocardial physiology, including myocardial perfusion, assessment of CAD, myocardial infarction, and ventricular function. Growing evidence from clinical and prognostic studies strongly supports the application of myocardial perfusion imaging with cardiac MR as a diagnostic and prognostic tool to guide medical therapy in the clinical setting. During the past decade, the myocardial perfusion assessment with cardiac MR has evolved into a powerful clinical tool, which helps clinicians diagnose and better understand several important cardiac conditions.

Disclosures of Conflicts of Interest: O.R.C. No relevant conflicts of interest to disclose. C.R. No relevant conflicts of interest to disclose. R.Y.K. No relevant conflicts of interest to disclose.

References

