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Abstract
Objectives To demonstrate the overlap of the hepatic and
bile phosphorus (31P) magnetic resonance (MR) spectra
and provide evidence of phosphatidylcholine (PtdC) con-
tribution to the in vivo hepatic 31P MRS phosphodiester
(PDE) signal, suggested in previous reports to be phos-
phoenolpyruvate (PEP).
Methods Phantommeasurements to assess the chemical shifts
of PEP and PtdC signals were performed at 7 T. A retrospec-
tive analysis of hepatic 3D 31P MR spectroscopic imaging
(MRSI) data from 18 and five volunteers at 3 T and 7 T,
respectively, was performed. Axial images were inspected
for the presence of gallbladder, and PDE signals in represen-
tative spectra were quantified.
Results Phantom experiments demonstrated the strong pH-
dependence of the PEP chemical shift and proved the overlap
of PtdC and PEP (~2 ppm relative to phosphocreatine) at
hepatic pH. Gallbladder was covered in seven of 23 in vivo
3D-MRSI datasets. The PDE gall/γ-ATPliver ratio was 4.8-fold
higher (p=0.001) in the gallbladder (PDEgall/γ-ATPliver=3.61

±0.79) than in the liver (PDEliver/γ-ATPliver=0.75±0.15). In
vivo 7 T 31P MRSI allowed good separation of PDE compo-
nents. The gallbladder is a strong source of contamination in
adjacent 31P MR hepat ic spectra due to bi l iary
phosphatidylcholine.
Conclusions In vivo 31P MR hepatic signal at 2.06 ppm may
represent both phosphatidylcholine and phosphoenolpyr-
uvate, with a higher phosphatidylcholine contribution due to
its higher concentration.
Key Points
• In vivo 31P MRS from the gallbladder shows a dominant
biliary phosphatidylcholine signal at 2.06 ppm.

• Intrahepatic 31P MRS signal at 2.06 ppmmay represent both
intrahepatic phosphatidylcholine and phosphoenolpyruvate.

• In vivo 31P MRS has the potential to monitor hepatic
phosphatidylcholine.
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Abbreviations
PtdC phosphatidylcholine
PCr phosphocreatine
PDE phosphodiesters
PEP phosphoenolpyruvate
Pi inorganic phosphate
PME phosphomonoesters
AMARES advanced method for accurate, robust and

efficient spectral fitting
B0 magnetic field strength
MRSI magnetic resonance spectroscopic imaging
GPC glycerol 3-phosphorylcholine
GPE glycerol 3-phosphorylethanolamine
MRS magnetic resonance spectroscopy
31P phosphorus
TE echo time
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TR repetition time
FWHM full width at half maximum
SD standard deviation

Introduction

In vivo phosphorus (31P) magnetic resonance spectroscopy
(MRS) provides unique non-invasive information about hu-
man liver metabolism under various physiological and patho-
logical conditions [1–9]. Alterations of cell membrane precur-
sors (phosphomonoesters [PME]) and cell membrane degra-
dation product (phosphodiesters [PDE]) levels have been
associated with alcoholic, viral, and cholestatic aetiologies,
regenerative changes, alcoholic and nonalcoholic fatty liver
disease, cirrhosis, diabetes, or liver metastases [2–6, 10].

In addition, in vitro 31P MRS enables quantitation of tissue
phospholipids [11, 12]. Several in vitro and in vivo 31P MRS
studies of human bile [12–15] and liver tissue extracts [12, 16]
showed a dominant peak of phosphatidylcholine (PtdC), a
typical phosphodiester and part of bile lecithin [17]. A high
concentration of PtdC in the gallbladder was also previously
visualized by in vivo 1H single-voxel MRS [18]. PtdC is an
essential phospholipid in mammalian cells and is produced in
all nucleated cells and tissues via a choline pathway [19]. PtdC
synthesis is essential for VLDL secretion from the liver [19].
Alterations in PtdC metabolism were directly linked with
alcoholic [20] and nonalcoholic fatty liver disease [21], as
well as with hepatic cancer [14].

A direct comparison of in vivo and in vitro 31PMRS results
with the literature is often hampered by the use of different
peaks as a chemical shift reference and a certain mismatch in
terminology. Typically, phosphocreatine (PCr) is used as the
0 ppm reference in in vivo 31PMR spectra [1–9]. On the other
hand, 85 % inorganic orthophosphoric acid is used as refer-
ence (0 ppm) for in vitro 31P MRS experiments [11, 12]. This
results in a ~2.9 ppm difference in chemical shifts between
in vitro and in vivo 31P MRS spectra. All 31P chemical shifts
reported in this paper are relative to PCr (δPCr=0 ppm ). A
terminological mismatch is mostly visible in the use of the PC
abbreviation for phosphocholine for in vivo 31PMR spectra or
phosphatidylcholine in the in vitro 31P MRS community.
Alternative abbreviations for phosphatidylcholine (PtdC;
PtdCho) have also been suggested [15, 22].

The main contributors to the in vivo hepatic 31P MRS PDE
signal are glycerophosphocholine (GPC) at 2.76 ppm and
glycerophosphoethanolamine (GPE) at the 3.2 ppm reso-
nance. The improvement of in vivo 31P MRS resolution by
proton broadband decoupling at lower magnetic fields (e.g.,
≤3 T) [3, 7, 23], or by the application of ultra-high fields (e.g.,
≥7 T) [22], allows for differentiation of these two metabolites
and offers the ability to recognize an additional metabolic
resonance at 2.06 ppmPCr=0ppm [3, 7, 22, 23]. Studies on cell

cultures and extracted liver biopsies assigned this resonance to
phosphoenolpyruvate (PEP) [24] or perchloric acid extraction
artefacts [8, 25]. Some of the literature about in vivo hepatic
research adopted this assignment [3, 7, 23, 26]. It has been
previously suggested that there was an overlap of PEP and
PtdC in hepatic 31P MRS spectra, but no evidence was pro-
vided [7, 22]. Pollesello et al. performed phantom measure-
ments of mixed 31P solutions [27], including PEP (2.45 ppm),
but PtdC was missing. To the best of our knowledge, the only
systematic MRS study that included both solutions was per-
formed under alkaline conditions (e.g., pH=14) [28]. The
chemical shift of PtdC is pH-independent [11]. Although a
PEP chemical shift could be affected by pH, we are not aware
of any systematic measurement in this respect. Both PEP and
PtdC are potential important targets of metabolic research, and
their contribution to the resonance at 2.06 ppm is a subject of
current discussion [7, 13].

The importance of PEP is based on its highest-energy
phosphate bond (-61.9 kJ/mol) and the involvement in both
glycolysis and gluconeogenesis. The conversion of PEP to
ADP by pyruvate-kinase generates one molecule of pyruvate
and one molecule of ATP. Reversed phosphorylation of pyru-
vate to PEP by phosphoenolpyruvate-carboxykinase is con-
sidered to be a rate-limiting step in gluconeogenesis [29].

PtdC is the major component of biological membranes in
addition to lecithin solutions. PtdC is a predominant phospho-
lipid component of bile, protecting the bile ducts from the
harmful effects of bile acids by the formation of mixed mi-
celles [17]. A substantial part of PtdC is also secreted to the
hepatic plasma where it contributes to plasmatic lipoproteins
[19]. Thus, the in vivo assessment of biliary and hepatic PtdC
is of potential diagnostic value in bile duct and liver disorders,
where its impaired secretion may play a key role in the
pathogenesis of these disorders [14, 20, 21, 30]. Moreover,
PtdC may be a potential marker for the evaluation of the
therapeutic efficacy of pharmacological biliary PtdC excretion
enhancement [31].

The purpose of this study was to assess the overlap of the
chemical shifts of PEP with PtdC in test solutions, taking the
potential pH-dependence of the PEP resonance position into
account. Further on, we aimed to assess the possible contri-
bution of PtdC to the hepatic and biliary in vivo 31P MRS
signal at 2.06 ppm through retrospective quantification of
in vivo 31P 3D magnetic resonance spectroscopic imaging
(MRSI) measurements of the hepatic region.

Materials and methods

Study design and volunteers

Institutional review board approval for 31P MRSI measure-
ments was obtained, and all subjects gave written informed
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consent. In this retrospective study, data were analyzed from a
total of 23 healthy volunteers (m/f=14/9; age=40.4±
17.7 years; BMI=24±3 kg/m2) who underwent liver 31P
MRSI in our institution between 2007 and 2009 at 3 T, and
between 2011 and 2012 at 7 T. Healthy volunteers measured
at 3 T represented a control group from a previous study of
type II diabetes mellitus patients. Data from that study, in
which hepatic tissue was studied exclusively, were published
previously [4].

Data acquisition

Phantom experiments

In order to determine chemical shifts (i.e., signal positions in
the 31P MR spectrum), nine cylindrical test tubes (Ø=2 –
2.5 cm, V=10 – 20 ml) were filled with the following
chemicals (Sigma Aldrich): inorganic phosphate (Pi pH=7),
phosphocreatine (PCr pH=7), and PtdC pH=7 (diluted in 40 %
ethanol solution); and five PEP tubes with pH of 3, 5.5, 7,
12.3, and 14 (electronic pH tester reading). In addition, a
human bile sample, acquired by biopsy during gallbladder
surgery, was included. The pH of hepatic and gallbladder bile
in humans ranges from 6.5 to 8 [32]. Tubes were placed in a
plastic box filled with a physiological solution. Global mag-
netic field homogeneity across all tubes assessed by the
FWHM of the water signal was ~10 Hz. Thus, susceptibility
effects on the resonance position could be neglected. A 2D
MRS imaging (MRSI) acquisition (32×32, TR=10 s, TA=
3 h) of the phantom object was acquired on a human 7 T MR
system (Siemens, Healthcare, Erlangen, Germany) using a
double-tuned surface coil (1H/31P, 298/120.7 MHz, Ø=
10 cm, RAPID Biomedical GmbH, Rimpar, Germany).

In vivo experiments All measurements were performed in the
morning after a 12-h overnight fast. Subjects were examined
in the prone positionwith a 10-cm-diameter linearly polarized,
double-tuned 1H/31P surface coil positioned under the lateral
aspect of the liver on a 3 T (n=18) whole-body scanner
(Medspec S30/80; Bruker Biospin, Ettlingen, Germany), or
on a 7 T (n=5) MR system (Siemens Healthcare, Erlangen,
Germany). This positioning was chosen to reduce breathing-
related artefacts asmuch as possible. AxialMRI gradient-echo
images (15 slices, FOV=20×20 cm, 128×96, TE=3.4 ms,
TR=120 ms) covering the region of interest were acquired
during one breath-hold, immediately before the 31P MRSI
scan (Figs. 2a and 3a). During the 31P MRSI measurements,
the subjects were instructed to breathe freely. The 31P 3D k-
space-weightedMRSI localization technique (13×13×13ma-
trix at 3 T or 12×12×12 matrix at 7 T; field of view: 20×20×
20 cm3; repetition time 1 s at 3 T, or 1.5 s at 7 T), with an
adiabatic B1-insensitive, half-passage excitation pulse (2.5-ms
sin/cos-modulated, bandwidth=4300 Hz) was used to acquire

31P MR spectra. The whole protocol, including set-up, took
approximately 45 min at 3 T and 21 min at 7 T.

Data processing Axial MR images were inspected for the
presence of gallbladder signal. In all MRSI data sets, the
matrix size was interpolated to 16×16×16 voxels. The
interpolated voxel size was 12.5×12.5×12.5 mm3. Two
representative spectra from each volunteer, one from gall-
bladder and one from liver tissue, at a similar distance
from the centre of the coil, were selected for quantifica-
tion. The AMARES time-domain-fitting algorithm was
used to evaluate PDE signals in the selected spectra. In
addition, the PtdC+PEP/γ-ATP ratio was evaluated in
nine voxels containing liver tissue at a minimum of
5 cm away from the gallbladder in each of the 7 T
volunteers. Resonance positions in all 31P MR spectra
were referenced to the resonance of phosphocreatine
(δPCr=0 ppm ).

Statistical methods

The mean and standard deviation (SD) of PDE integrals were
computed for representative spectra from the gallbladder and
liver. Both integrals were normalized to the γ-ATP signal in
liver tissue. To assess the difference between these two sets of
data, we performed a two-tailed, paired t test. In addition, 3 T
and 7 T results of both PDE/γ-ATP, in the liver and gallblad-
der, were compared by an unpaired t-test. A p-value≤ .05
indicated a significant result.

Results

Phantom experiments

The results of the phantom experiments are summarized
and depicted in Fig. 1. Localized spectra allowed precise
assessment of metabolite chemical shifts. The following
chemical shifts were observed: PCr (0 ppm), Pi
(4.7 ppm), PEPpH=3 (-1.2 ppm), PEPpH=5.5 (-1 ppm),
PEPpH=7 (1.6 ppm), PEPpH=12.3 (2.3 ppm), PEPpH=14

(2.5 ppm), PtdC (2 ppm), and human bile (2 ppm).
These results demonstrated the strong dependence of
the PEP resonance position on pH, which is summarized
in Fig. 1D. PtdC solution resonated at the same position
as the dominant signal from the human bile sample. The
PtdC solution showed two components due to the use of
only ~60 % purified L-α-phosphatidylcholine from egg
yolk. The second component may correspond to
lysophosphatidylcholine, which is present in egg yolk
[16], and its resonance was shifted ~0.7 ppm downfield
from the PtdC resonance.
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In vivo results

Seven of 23 in vivo data sets included signal from the gall-
bladder. Figs. 2 and 3 show typical 3 T and 7 T MRS data,
where both gallbladder and liver tissue were present in the
acquired 31P 3D-MRSI data sets. A strong signal, resonating
at approximately 2 ppm, was always detectable in the gall-
bladder. In addition, 7 T MRS data (Fig. 3) allowed good
separation of PDE components, with a dominant signal at
2.06 ppm clearly resolved (Fig. 3C). Note also the contami-
nation in liver tissue spectra adjacent to the gallbladder. The
PDE/γ-ATPliver ratio was, on average, 4.8-fold higher (p=
0.001) in the gallbladder spectra (PDEgall/γ-ATPliver=3.61±
0.79) than in the liver tissue (PDEliver/γ-ATPliver=0.75±0.15).
No statistical difference was found between 3 T and 7 T PDE/
ATP ratios, neither in hepatic tissue nor in gallbladder. Typical
transversal slice from a 7 T in vivo 31P 3D MRSI dataset
without gallbladder contamination is depicted in Fig. 4. The

PtdC+PEP/γ-ATP ratio in the non-contaminated liver tissue
of the volunteers scanned at 7 T was 0.15±0.05.

Discussion

In our study, phantom measurements and a retrospective anal-
ysis of in vivo data showed that phosphatidylcholine (PtdC)
contributes to the in vivo 31P MRS signal at 2.06 ppm, and is
the dominant component in human bile MRS signal. The high
in vivo concentration of PtdC in the gallbladder is in accor-
dance with previous 1H single-voxel MRS [18]. The observed
PtdC chemical shift overlaps with the PEP resonance at phys-
iological pH.

In vivo, the hepatic resonance at 2 ppm was previously
assigned to phosphoenolpyruvate (PEP) [3, 23, 26] or to the
effect of perchloric acid extraction [8, 25]. Evidence that
confirmed the assignment of the PEP resonance position in

Fig. 1 Phantommeasurements including nine samples (B) filled with Pi,
PCr, 5× PEP (pH=3, 5.5, 7, 12.3, 14), PtdC, and human bile.
Representative spectra of Pi, PCr, PtdC, and bile (panel A), as well as

PEP (panel C) are depicted. Note the strong dependence of the PEP
chemical shift on the pH, summarized in graph D. The data points were
fitted with a sigmoidal function.

Fig. 2 This figure depicts a
typical transversal slice from a 3 T
in vivo 31P 3D MRSI dataset (A).
Sample muscle (B), liver (C-
bottom), and gallbladder (C-top)
spectra are depicted. The quality
of localization is reflected by the
PCr resonance that is present in
the muscle and lacking in the
liver. Note the strong signal of
phosphatidylcholine (PtdC) at
2 ppm in the gallbladder and its
surrounding area (C).
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phantom solution measurements was provided under alkaline
conditions (e.g., pH=14), which could have affected the
chemical shift of PEP [28]. This was confirmed by our phan-
tom experiment where the chemical shift of the PEP resonance
showed a pH-dependence, with a downfield chemical shift
(e.g., ~1.6 ppm) at a pH of 7. Other phantom measurements
(pH~8) performed on mixture solutions, including PEP and a
variety of other 31P metabolites, showed the PEP resonance at
2.45 ppm [27]. These different chemical shifts may be partial-
ly explained by the strong sensitivity of the PEP chemical shift

to pH in the 6 – 9 range, as shown in our phantom experiment
(Fig 1D).

The assessment of tissue PEP and PtdC concentrations
could provide another clue to the proper assignment of reso-
nance lines or for the estimation of their relative contribution
to these lines in in vivo conditions. The in vivo concentration
of the hepatic PEP was reported to be ~0.02 mmol/l [33],
which would be below the detection limit for in vivo 31P
MRS. Hamasaki et al. detected the 31P MRS signal of PEP
in intact erythrocytes only after the addition of a high

Fig. 3 Display of typical
transversal slice from a 7 T in vivo
31P 3DMRSI dataset (A). Sample
muscle (B), liver (C-bottom), and
gallbladder (C-top) spectra are
depicted. The quality of
localization is reflected by the PCr
resonance that is present in the
muscle and lacking in the liver.
Note the strong signal of
phosphatidylcholine (PtdC) at
2 ppm in the gallbladder and its
surrounding area (C).

Fig. 4 Display of typical
transversal slice from a 7 T in vivo
31P 3D MRSI dataset without
gallbladder contamination (A).
Downfield parts of sample liver
(B) spectra are depicted. Note the
signal of intrahepatic
phospatidylcholine (PtdC) and
phosphoenolpyruvate (PEP) at
2 ppm.
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concentration of PEP (65 mM) and toxic inhibition of glycol-
ysis by sodium fluoride NaF. Non-toxic conditions resulted in
immediate metabolization of PEP [34]. Further studies also
showed the need for strong metabolic perturbation to
increase the 31P MRS signal of PEP. Stimulation of glu-
coneogenesis [35] or inhibition of glycolysis [27] were
used for this purpose.

Although there is no information about intra-hepatic phys-
iological in vivo PtdC concentrations, they could be estimated
indirectly. Human bile consists of ~7 mmol/l of soluble phos-
pholipids [36] and the majority (~50 %) consists of PtdC [12].
Considering an intrahepatic bile volume of ~29 ml (including
micro and macro ducts [37]) and a hepatic tissue volume of
~1,500 ml results in an intra-hepatic PtdC concentration of
~0.07 mmol/l, which is approximately 3.5-times higher than
the expected PEP concentration. PtdC+PEP/ATP ratio from
this study (0.15±0.05) and assumption of 2.14 mmol/l con-
centration of the hepatic ATP [38] would result in an estimated
PtdC+PEP concentration of 0.32±0.1 mmol/l (no T1 relaxa-
tion times correction), which may reflect not only biliary, but
also hepatic PtdC secreted to the plasma [19].

Our results also show that bile in the gallbladder is a
strong source of MR signal contamination of hepatic
spectra in the PDE region. This was already noted by
Cox et al. [6], but, unfortunately, due to the lower spectral
resolution at 1.6 T it was not possible to characterize
which of the PDE was responsible for the contamination.
To our knowledge, this strong source of contamination
has not been discussed elsewhere. This signal contamina-
tion should be considered, particularly when using phase-
encoding within MRSI measurement schemes with a
small number of phase-encoding steps (typically the case
in 31P MRSI). In order to improve the point-spread func-
tion and reduce voxel bleeding, we used higher matrix
sizes (13×13×13 at 3 T and 12×12×12 at 7 T) in com-
bination with weighted acquisition. Nevertheless, spectra
from liver tissue, located two columns apart from the
gallbladder, should still be considered contaminated by
the bile signal. This contamination reflects an imperfect
point-spread function—a typical localization error of the
phase-encoding scheme used in MRSI experiments with a
low number of phase-encoding steps. These artefacts are
even more prominent in studies where lower phase-
encoding matrices were used (e.g., 1×4 MRSI [39]; 1×8
MRSI [5]; 8×8 MRSI [23]). Such acquisition schemes
could be prone to contamination by gallbladder bile due
to imperfect localization.

Other localization schemes often used for 31P MRS of the
liver (e.g., 1D-ISIS, DRESS, or 3D-ISIS) use relatively large
volumes and/or are prone to artefacts due to breathing motion.
In such cases, the acquisition volume must be prescribed with
exceptional care to avoid gallbladder from the volume of
interest (VOI). Solanky et al [40] observed elevated PDEs

when biliary hyperplasia was present in the rat liver. There-
fore, possible contamination should also be considered in
patients with dilated intrahepatic bile ducts, for different
reasons.

Another sign of possible contamination in the liver
spectra by PtdC are high variations of previously reported
absolute concentrations and T1 relaxation times of PDEs
[39]. Possible partial volume effects, as well as T1 differ-
ences between PtdC and GPC+GPE, could partly explain
these results. Future examinations aiming at bile PtdC
would be necessary to explain its possible role in these
variations. Furthermore, findings of altered hepatic PDE
signals, especially when not ideally resolved, should be
considered indicative of possible MRS contamination by
hepatic bile or by gallbladder signals.

Detection of the gallbladder PtdC resonance in only seven
31PMRS data sets was caused by the limited penetration of the
surface coil, which did not allow for the localization of the
gallbladder in all subjects. A coil with optimized geometry
[41] in a dedicated experimental set-up should enable cover-
age of both the larger part of the liver and the gallbladder. The
assessment of the absolute concentrations of the PtdC signal at
2.06 ppmPCr=0ppm in our study was hampered by a lack of
knowledge of the T1 relaxation time of PtdC at both field
strengths, resulting in unpredictable partial saturation effects.

Further studies should investigate the potential use of the
PtdC resonance for metabolic studies of the liver, gallbladder,
and bile ducts. Changes in biliary PtdC may be indicator of
malignancy and dynamic metabolic perturbation, representing
cell breakdown, death, and cellular regeneration [14]. Notably,
hereditary and acquired defects in biliary phosphatidylcholine
secretion may play a key role in the pathogenesis of bile duct
and liver diseases [14, 20, 21, 30], and the assessment of
biliary PtdC could have diagnostic value in such disorders
[14]. Moreover, pharmacological stimulation of biliary PtdC
excretion, and its possible monitoring by 31P MRS, may
represent an interesting therapeutic approach to hepatobiliary
disorders, and the use of several drugs (e.g., fibrates,
ursodeoxycholic acid), since these drugs have been shown to
enhance PtdC in bile [31].

In conclusion, our in vitro data showed the depen-
dence of the phosphoenolpyruvate chemical shift on pH
and its potential overlap with the PtdC resonance in
physiological conditions. Our in vivo data showed a
dominant 31P MRS resonance at 2.06 ppm in the gall-
bladder region that arose from biliary phosphatidylcho-
line, whereas we suggest that the 31P MR hepatic signal
at 2.06 ppm may represent both intrahepatic phosphati-
dylcholine and phosphoenolpyruvate with the major con-
tribution from phosphatidylcholine due to its higher con-
centration. In vivo 31P MRS has the potential to monitor
noninvasively hepatic phosphatidylcholine and assess its
concentration.
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