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Nuclear spin-lattice relaxation times of Al in pure Al and Cu6'

in annealed pure Cu have been measured with a nuclear induction
spectrometer, by the method of saturation, The experimental
values of Ti are 4.1~0.8 milliseconds for A127 and 3.0~0.6.
milliseconds for Cu", in reasonable agreement with theory.

The dispersion mode of the nuclear resonance was also observed,
and it was found that y' (the real part of the rf susceptibility) does
not saturate at the same level as the absorption, x", but remains
roughly constant out to a radio-frequency 6eld intensity of about 2
gauss. Both x' and p" become narrower and nearly Lorentzian in
shape above saturation. When the dc magnetic Geld modulation is
increased from 14 to 41 cps the phase of the dispersion signal lags
behind the modulation, presumably because the modulation
period is then comparable to Ti. Large dispersion signals above
saturation have also been observed for the Na" resonance in NaC1.

This behavior of the dispersion mode is in conQict with the
predictions of Bloembergen, Purcell, and Pound and of the Bloch
equations. The validity of these theories is re-examined, and it is
concluded that although they are applicable to nuclear resonance
in liquids and gases, and to solids at small rf intensities, they
contain incorrect assumptions as applied to solids at high rf power
levels. The theory of Bloembergen, Purcell, and Pound is based on
an assumption equivalent to that of a spin temperature. It is
shown that the spin state cannot be strictly described by a spin
temperature because the phases of the spin quantum states are not
incoherent, as required by the temperature concept. The transverse
decay of the nuclear magnetization predicted by the Bloch equa-
tions is shown to be partially forbidden by energy and entropy
considerations if a large rf field at the resonance frequency is
continuously applied to the solid.

A theory is developed which is applicable only to solids at rf

magnetic 6eld intensities well above the saturation level and which
is in reasonable agreement with the experimental observations.
The Hamiltonian is transformed to a coordinate system rotating at
the frequency of the rf 6eld. The resulting time-dependent parts of
the spin-spin interaction are nonsecular perturbatioris on the time-
independent part, and can therefore be ignored. Statistical me-
chanics is applied to the remaining stationary spin Hamiltonian;
specifically it is assumed that the spin system is in its most
probable macrostate (a canonical distribution of quantum states)
with respect to the transformed spin Hamiltonian. This assump-
tion is justified because the transformed spin Hamiltonian is
eRectively time independent and the spin-lattice interaction is
small, and it is analogous to assumptions basic to classical acous-
tics and Quid mechanics. The spin-lattice interaction merely
determines the expectation value of the transformed spin
Hamiltonian, which can be readily calculated under the assump-
tion that the expectation value of the spin angular momentum of
each spin is relaxed independently to its thermal equilibrium value
by the lattice in time T&. Both fast and slow modulation of the dc
magnetic 6eld can be treated.

"Rotary saturation" is observed by applying an audio-frequency
magnetic 6eld to the sample in the dc field direction while ob-
serving the dispersion derivative at resonance with a large rf 6eld
II&. When the audio-frequency approaches ya& the dispersion
signal decreases and goes through a minimum. The e6'ect is easily
treated theoretically in solids, liquids and gases by using a rotating
coordinate system, and is a rotary analogue of ordinary saturation.
It is a convenient method for calibrating rf magnetic Gelds and
appears potentially capable of providing useful information on the
solid state. Experimental data on rotary saturation are presented
and discussed.

I. INTRODUCTION

HIS paper reports an experimental and theoretical
study of nuclear magnetic resonance in solids at

high rf magnetic 6eld intensity. Metallic copper and
aluminum were experimentally investigated, and the
original objective of this work was to obtain nuclear
spin-lattice relaxation times in these metals for com-
parison with the observed' Knight shifts' and the theory
of Korringa, ' which relates the relaxation times and
Knight shifts to the electronic structure of the metals.
The spin lattice relaxation times were measured by the
method of saturation.

In the course of these measurements it was found that
the dispersion mode of the nuclear resonance signal
behaves in a way which is in conAict with the existing
theories' ' of magnetic resonance saturation. As a re-

*Partially supported by the Ofhce of Naval Research.
t National Science Foundation Postdoctoral Fellow 1953—1954.' H. S. Gutowski and B.R. McGarvey, J. Chem. Phys. 20, 1472

(1952).' W. D. Knight, Phys. Rev. 76, 1259 (1949).' J. Korringa, Physica 16, 601 (1950).' F. Bloch, Phys. Rev. 70, 460 (1946).
e Bloembergen, Purcell, and Pound, Phys. Rev. 73, 679 (1948)

(henceforth referred to as BPP).
6 A. M. Portis, Phys. Rev. 91, 1071 (1953).

suit, the validity of these theories as applied to solids
was re-examined, and a theory was developed along
somewhat different lines which appears to agree with
experiment for rf magnetic field intensities well above
the saturation level. This theory also suggested the
possibility of observing an effect which we call "rotary
saturation, " analogous to ordinary saturation but
taking place in the effective field of a rotating coordinate
system.

II. SATURATION DATA AND DISCUSSION

The experimental apparatus was a nuclear induction
spectrometer' similar to those previously built by
Weaver" and by Jeffries. s The details will be described
elsewhere. The most important new feature of this
equipment was a suitable calibrating circuit, permitting
relative measurements of rf nuclear susceptibility to be
made independent of receiver gain, rf level, and other
variables. The output of this spectrometer yields the

r H. E. Weaver, Phys. Rev. 89, 923 (1953).' C. D. j'effries (private communication to Professor Bloem-
bergen). We are indebted to Professor Jerries for information on
his spectrograph.
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derivatives of the real and imaginary susceptibilities' p'
and p". The rf intensity was determined to an accuracy
of better than 5 percent using the method of rotary
saturation described below. All data were obtained at
room temperature.

Powdered samples of pure aluminum and annealed
pure copper were prepared as described by Sloembergen
and Rowland. " In these samples, electric quadrupole
eGects are relatively small and can evidently be
neglected. ""

The relative absorption at resonance was measured by
integrating the recorded absorption signal. The absorp-
tion data are plotted in Fig. 1, for an rf frequency of 7.6
Mc/sec and a magnetic field modulation frequency of
14 cps. In both aluminum and copper the absorption
appears to follow the expected' ' dependence on rf field
intensity for a system of dipolar coupled spins:

x"(vo, Hr) =x"(vp, O)(1+ox'Hr'I'ig(vo)] ', (1)

where x"(vo, H&) is the imaginary part of the nuclear
magnetic susceptibility, g(v) is the shape function of the
unsaturated resonance, vo is the resonance frequency,
and II~ is the magnitude of the rotating rf field. "

The shape function g(v) is normalized with respect to
integration over frequency:

g(v)dv=1.

( (
I

87r&ogp'I'v '
p+(«) p (eo)

5 3
(3)

where vp is the atomic volume, p+(«) are the densities of
electronic states per unit volume per unit energy range
for spins up and down respectively, evaluated at the
Fermi level, I'p is the electronic probability density
evaluated at the nucleus for an electron in the Fermi
surface (assuming that the electronic wave function is
normalized to unity over the atomic volume vp), g is the
nuclear g-factor tt~/IP, and P is the Bohr magneton. In
deriving this equation the e8ect of electronic correla-
tions and of possible I'-character (asymmetry) in the
electronic wave function has been neglected. " The
latter assumption is approximately justified unless the
P-character part of the electronic wave function is much
greater than the 5-character part.

Korringa also obtained a value for the Knight shift
which can be written

Values of g(vp) were obtained by integrating the inte-
grated absorption signal, and T~ was obtained from the
data of Fig. 1 using Eq. (1).As will be discussed below,
there is some question about the correctness of (1), but
it is believed that values of T& obtained in this way are
reasonably accurate.

Korringa' has developed the theory of nuclear mag-
netic relaxation and the Knight shift in metals.
His theory has been discussed by Bloembergen and
Rowland" and by Holcomb and Norberg. " Korringa
obtains the result
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FIG. 1. Relative absorption at resonance x"(vp) as a function of
rf Geld intensity. The units of x"(vp} are not the same for aluminum
and copper in this figure.

' Throughout this paper we use x to denote the x—x
component of the complex susceptibility tensor defined by
M=ReL(x'+fx"}H expuutg, where fvl is the oscillatory mag-
netization produced by the rf field II cosset. The experimentally
observed quantity is the oB-diagonal element p„which is equal to
Mix for a spin system in a large dc magnetic field.

"N. Bloembergen and T. J. Rowland, Acta Metallurgica I, 731
{1953)."T.J. Rowland, Acta Metallurgica (to be published).

"Throughout this paper the rf field intensity, denoted by III,
will be the amplitude of one of the circularly polarized modes
which comprise the applied linearly polarized rf field of peak
amplitude 2HI.

(~H/Hp) =a/ uTg r„
where Tr is given by (3), AH is the Knight shift in
gauss, and Ho is the applied magnetic field in gauss. The
effect of electronic correlations is also neglected in this
expression.

In Table I are listed experimental values of g(vp), T,
and AH/Hp, together with the theoretical values of T,
obtained from Eq. (4) and the experimental values of
AH//Hp. Also included in Table I are the values of
vpI'vm*/m obtained from Eq. (3) and the experimental
Tj values, assuming the electrons in the metal can be
treated as a Fermi 'gas with m*=m, and with one
electron per atom. The quantity voI'p is the magnitude
of the square of the wave function at the nucleus for an
average electron at the Fermi level, relative to that
predicted by the plane-wave approximation. Since re-
laxation effects due to possible P-character in the
electronic wave function have been neglected in (3), the
values of vpI'vm*/m given in Table I must be regarded
as upper limits.

The discrepancy between the theoretical and experi-
mental values of T& in copper is probably due to
electronic correlation eGects. According to Pines, " it is
"D. F.Holcomb and R. E.Norberg, Phys. Rev. 98, 1074 (1955)."D. Pines (private communication). We wish to thank Dr.

Pines for permission to quote him.
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reasonable to assume that correlations aBect T& only by
changing the density of electronic states from p+(eo) to
p., where p, is the actual density of states of the corre-
lated electron gas. The corresponding change in T~ is
Lp+(eo)/p. J', which Pines estimates to be approximately
unity in both copper and aluminum. Correlations will
also affect the Knight shift by increasing the para-
magnetic susceptibility of the electron gas from x„,its
uncorrelated value, to x„,. The corresponding increase
in the Knight shift is x„,/x„,which Pines estimates to be
1.35 for copper and 1.3 for aluminum. If we apply these
corrections to (4), we get theoretical T~ values of 4
milliseconds for copper and 8.5 milliseconds for alumi-
num. The agreement with experiment is good for copper
and poor for aluminum. The remaining discrepancy in
aluminum may be due to the effect of possible P-
character of the electronic wave function, the existence
of which is likely because the valence electron of an
aluminum atom is a P-electron. The data in both
aluminum and copper are in poor agreement with
extrapolation from measurements"" of T~ at low
temperatures.

TABLE I. Experimental values of the inverse line width, relaxa-
tion time, and Knight shift, and related theoretical predictions of
the relaxation time and mean electronic probability density at the
nucleus.

g (vo) milliseconds
T1 milliseconds
nH/Ho'
T1 milliseconds (theoretical)
(m*/m) voP~b

Aluminum

0.212&0.02'
4.ia0.8
0.237)& 10~
5.06
250

Copper

P.228~0,02b
3.0m 0.6
0.161X10~
2.26
260

a T. J. Rowland (private communication).
b Present research.
e See reference 1.

The derivatives of the absorption and dispersion ob-
tained in aluminum at various rf intensities are shown in
Fig. 2. The resonance curves observed in copper are
similar at high rf levels, but more nearly Gaussian at low
rf levels.

The important feature of these curves is the fact that
the dispersion does not saturate at the same level as the
absorption, but remains roughly constant out to a level
of several gauss rf. As will be discussed below, this be-
havior is in strong conQict with the existing theories of
magnetic resonance saturation in solids, which predict
that both the absorption and dispersion should decrease
(near resonance) at the same level, according to (1).
Portis' has observed similar nonsaturation of the dis-
persion in the case of paramagnetic resonance in F-
centers, but the saturation behavior of the absorption
was diferent. The theory developed by Portis for the
case of F-centers is not applicable here, because the
diferent nuclei are tightly coupled by the dipolar
interaction.

"N. J. Poulis, Physica 16, 373 (1950)."N. Bloembergen, Physica 15, 588 (1949).

FIG. 2. Absorption and dispersion signals in pure aluminum at
various rf power levels. The modulation was 14 in phase with the
lock-in detector and the resonance frequency was about 7.6
megacycles per second.

The absorption line becomes narrower above satura-
tion, as previously reported by Abell and Knight, "and
similar narrowing occurs in the derivative of the dis-
persion. This is also in convict with theory, which
predicts that the absorption and dispersion curves
should both broaden upon saturation.

The audio phase of the signal at the output of the
receiver was not the same as the phase of the modulation
applied to the dc magnetic field IIO. In the limit of small
modulation frequency, the nuclear resonance signal and
the modulation appear to be in phase, and the output of
the lock-in amplifier probably represents the true deriva-
tive of the absorption and dispersion. As the modulation
frequency is increased, however, the nuclear resonance
signal lags behind the modulation. The apparent deriva-
tive of the absorption or dispersion, as indicated by the
lock-in detector, is then not the true derivative, and a
resonance signal can also be observed by changing the
lock-in detector phase to 90' with respect to its normal
setting. This phenomenon is evidently not directly
related to the nonsaturation of the dispersion mode
noted in the paragraph immediately above. The phase
lag of the resonance signal relative to the modulation is
evidently a consequence of the fact that the modulation
period is comparable to T&. A similar phase lag can be
observed in systems obeying the Bloch equations,
as experimentally and theoretically investigated by
Halbach. "

In Figs. 3 and 4 are shown the apparent dispersion
derivatives at resonance in copper and aluminum, ob-
served with two different modulation frequencies and
with the lock-in detector adjusted to detect signals
either in phase or in quadrature with the modulation.
The in-phase data obtained at 14 cps are apparently
very nearly what would be observed in the limit of low
modulation frequency, ("slow passage") and therefore

» D. F. Abell and W. D. Knight, Phys. Rev. 93, 940 (1954).
'8 K. Halbach, Helv. Phys. Acta 27, 259 (1954}.
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Fn. 3. Apparent relative dispersion derivatives at resonance per
resonating nucleus as a function of rf power, for Cu" in annealed
copper and protons in impure water. The modulation frequency
and phase relative to the lock-in detector are as marked.

nearly correctly represent the behavior of the true
derivative of the steady-state dispersion.

For purposes of calibration and comparison, Figs. 3
and 4 also include the derivative of the dispersion at
resonance of protons in water at the same frequency
(thus at a smaller magnetic field) as that used to obtain
the aluminum and copper data. The water was heavily
doped with paramagnetic impurity (manganese sulfate)
and the relaxation time of the protons was of the order
of 5 millisecond. The Bloch equations predict that well
above saturation the derivative of the real part of the
nuclear susceptibility of such a sample should be (at
resonance)

XQII0~2H

QIIp 2Hi'TiII
(6)

where yp is the proton contribution to the static nuclear
susceptibility and T'~~ and T~II are the transverse and
longitudinal relaxation tirges4 for the protons in the
sample. The water and metal samples occupied nearly
the same volume in the nuclear induction head, so that
no geometrical correction is necessary for comparison.

The quantity plotted in Figs. 3 and 4 is the output of
the lock-in detector divided by the product of the rf
input level to the nuclear induction head, the modula-
tion amplitude, the total number of resonated nuclei in
the sample, the Q-factor of the receiver coil in the nuclear
induction head, and the over-a/I gain of the receiver and
lock-in detector. Of these corrections, the first and the
last two were given automatically by the calibration
circuit. In the limit of low modulation frequency the
quantity plotted in Figs. 3 and 4 should be the relative
contribution per nucleus to the rf susceptibility deriva-
tive at resonance. The accuracy of these data is thought
to be better than &20 percent.

Apparently these eGects are not limited to metals, but
are characteristic of solids in general, well below their
melting points. In insulating solids the observed dis-
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FxG. 4. Apparent relative dispersion derivatives at resonance per
resonating nucleus as a function of rf power, for AP" in pure
aluminum and protons in impure water. The units of X 'Bx'/BHO
are the same as in Fig. 2 and to avoid confusion the actual H20
data are omitted and only the dotted line through the H20 points
of Fig. 2 is included.

persion signals are in most, cases dMerent from what
they are in metals, because the relaxation time is likely
to,be longer than the period of the dc magnetic Geld
modulation. In Fig. 5 are shown dispersion signals ob-
tained from two NaCl samples of diferent purity. In the
impure NaCl, the relaxation time is thought to be long
compared to the modulation period and short compared
to the several minutes required to pass through reso-
nance. A similar dispersion curve can be obtained from
distilled water at high rf levels, as discussed by Halbach. "
In the Harshaw XaCl the relaxation time is clearly of
the order of the time (about one minute) taken to
sweep through the resonance, as indicated by the
asymmetry and hysteresis in the observed dispersion
signal.

YVe conclude this section by noting that the shape and
magnitude of the observed dispersion signals in both
metals and insulators can be accounted for by the
assumption that in the limit of large P~ the Bloch
equations hold with Ti Ts, rather than Ts ——sg(is) as
is required to yield the correct line width below satura-
tion, This assumption will be more or less justified in the
next section, and the resulting predictions and com-
parison with experiment will be discussed there and in
Sec. IV.

III. THEORY

A. Previous Saturation Theories
Ke now discuss the previous theories4 6 of magnetic

resonance saturation which lead to incorrect predictions
of the magnitude of the dispersion at high rf field
intensities in solids. Throughout this paper we are con-
cerned with solids in which the nuclei can be regarded as
Axed in their lattice positions, and we neglect diGusion
and lattice vibrations. This is justified only well below
the melting point.



NUCLEAR MAGNETI C RESONANCE SATURATION 179i

The theory developed by BPP' is the simpler of the
two approaches to saturation in magnetic resonance,
and is based on three assumptions. The first of these is
that the effect of the spin-lattice interaction is to relax
the spins to their equilibrium state in a time TJ,. This is
evidently correct, at least to a good approximation, in
most cases. The second assumption is that the spins
interact strongly with one another, so that energy
absorbed at one frequency of the dipolar broadened
resonance line is quickly transferred to all the spins,
whether or not they are in a local field exactly corre-
sponding to the applied rf frequency. This assumption
has been discussed by Bloembergen" and by Portis, ' and
appears to be justified in this case because of the
possibility of mutual spin Rips between neighboring
nuclei brought about by the dipolar interaction. The
third assumption of the BPP theory is that the complex
rf susceptibility is proportional to the difference in
population of the nuclear spin levels and is not affected
by the presence of the rf field except in so far as the spin
level populations are. When the spin system becomes
saturated the populations of the spin levels become

ore nearly equal and it follows directly from this as-
sumption that both the real and imaginary parts of the
rf susceptibility saturate in the same way.

If the lime shape is assumed to be Lorentzian" below
saturation, the predictions of the BPP theory are in
agreement with those of the Bloch equations (under
steady-state conditions) and, apparently, with experi-
ment in the case of most gases and liquids. As discussed
below, the BPP theory also predicts the correct asym-
ptotes for y" in solids for the limits H&—+0 and II&—+~,
and, therefore, the correct qualitative behavior of y"
over the whole range of Ht (except in the special case of
inhomogeneity broadening). ' The BPP prediction of the
variation of M, just at the onset of saturation is also
correct. Evidently, these predictions are valid in solids
because they are based only oo the first two assumptions
of the BPP theory. The predictions concerning the
dispersion above saturation, which are in marked dis-
agreement with the experimental data of Sec. II, are a
consequence of the third assumption, and it appears
certain that the trouble lies here.

Bloembergen" has pointed out that the BPP theory
must be incorrect when a large rf field is applied to a
solid in which T~4 T2 because in the limit as H~~~ the
line width is predicted to be yH, g(T,/Ts) rather than
pH& as expected from the uncertainty principle and the
transition probability associated with the rf field.

The assumption that the complex susceptibility is
proportional to the difference in population of the
adjacent nuclear spin levels is equivalent to the as-
sumption that the spin system behaves as if it were at
equilibrium at a spin temperature higher than the lattice
temperature, corresponding to the actual distribution of

' ¹Bloembergen, thesis, Leiden (unpublished), p. 49.
so G. E. Pake and E. M. Purcell, Phys. Rev. 74, 1184 (1948);75,

534 (1949).
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I'IG. 5. Apparent dispersion derivatives in samples of NaCl of
difterent purity. The Na" nucleus was observed at a frequency of
about 7.5 megacycles. The modulation frequency was 41 cps in
phase with the. lock-in detector.

nuclear spins among the 2I+1 levels. Evidently, the
assumption of an equilibrium distribution of spin states,
i.e., a spin temperature, is not justified in the case of
saturation, where the spins are subject to a large time-
dependent secular perturbation. Although the ampli-
tudes of the spin states may be described by a Boltzmann
distribution, the phases of the quantum states are not
random, as would be the case" at thermal equilibrium
and as is required in most quantum-mechanical pertur-
bation calculations. This can be seen from the fact that
M, and M„, the transverse components of .nuclear
magnetization, are not zero and cannot in general be
made arbitrarily small compared with M, if the system
is saturated. A random distribution of quantum phases
would lead to zero transverse magnetization. For this
reason it is surprising that the simple assumption of a
spin temperature predicts the same behavior for a
Lorentzian line as the more detailed assumptions of the
Bloch equations.

The Bloch equations4 are based on the assumptions
that the interaction of the spins with the lattice and
with each other can be considered independently of
their interaction with the externally applied magnetic
field, and that the effect of spin-lattice and spin-spin
interactions can be described by simple relaxation
terms. They predict a Lorentzian line shape and satura-
tion behavior similar to that predicted by BPP, ap-
parently in good agreement with experiment for most
liquids and gases. Detailed theoretical justification of
the Bloch equations has been given by Wangsness and
Bloch" and by Kubo and Tomita, "but their work is
applicable only to liquids and gases in which the
correlation time of the motion of the nuclei is short
compared to the Larmor period. These authors neglect
the effect of the rf field on the relaxation process, and
Bloch and Wangsness also consider the spins as inde-
pendent of each other, which, as they recognize, is not
justified in the case of solids.

2' R. C. Tolman, Principles of Statistical Mechanics (Oxford Uni-
versity Press, New York, 1930), Chap. IX.

~~ R. K. Wangsness and F. Bloch, Phys. Rev. 89, 728 (1953)."R.Kubo and K. Tonuta, J. Phys. Soc. (Japan) 9, 888 (1954).
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The Bloch equations have always been recognized as a
crude approximation for solids well below the melting
point, since they predict a Lorentzian line shape rather
than the nearly Gaussian shape" observed experi-
mentally. Thus it is natural to suppose that the spin-spin
terms of the Bloch equations (those involving T2) are
the source of the present difhculty. This can be seen in
more detail by considering a specific solution of these
equations.

Suppose that a circularly polarized rf field of magni-
tude Hi and frequency a&2 (the resonance frequency) is
continuously applied to the solid, and suppose that
initially the nuclear magnetization M is in the direction
of the rf field and of magnitude M~. Assume that T~))T2
as is the case in most solids at low temperatures. The
terms in the Bloch equations involving T& can then be
neglected during a time comparable to T2, and the
prediction of the Bloch equations is that M will remain
parallel to Hi and will decay exponentially to zero in a
time T2.

In the course of this decay work M&H& is done by the
spin system on the external magnetic field; this energy
can come only from the internal (spin-spin) energy of
the spin system. The energy cannot come from the
lattice, because we have implicitly neglected the spin-
lattice interaction by neglecting the T& term in the
Bloch equations. Speaking somewhat classically and
loosely we can say that the initial state corresponds to n
excess spins aligned in the rf Geld direction and the final
state corresponds to no excess spins aligned in any
specific direction and X excess spins aligned prefer-
entially in the direction of the magnetic fields of their
neighbors. Conservation of energy requires that

nHg= OQH, (6)

where bH is of the order of the rms magnetic field at a
nucleus due to its neighbors, or approximately the half-
width of the resonance line in gauss.

The decay predicted in time T2 by the Bloch equa-
tions is an irreversible process in a thermally isolated
spin system, and the entropy of the system -must
increase. The initial entropy of the spin system is the
same as that for a spin system with e excess spins
parallel to a fixed magnetic field:

S,=S2—kn2/1V. (7)

So is the maximum entropy of the spin system corre-
sponding to complete chaos, k is Boltzmann's constant,
Ã is the total number of spins, and for simplicity we
assume that the spin is —,'.

By analogy with (7), the entropy of the final state is
expected to be approximately given by

Sp =Sp —kX2/1V. (g)

This assumption can be justified by a detailed calcula-
tion similar to that of Appendix A discussed below.

From (6), (7), and (8) it follows that the spin entropy
increases during the decay only if H&&bH. Thus for

suSciently large H& the Bloch equations are evidently
incorrect, because they predict an irreversible process in
which the entropy decreases.

The actual final value of M after such a transverse
decay can be estimated by maximizing the entropy,
subject to the condition that energy must be conserved.
We assume that the entropy is S2—k(n2+X')/E and
require that nHi+K8H be a constant. If & is initially
zero the entropy is a maximum if n, and therefore M, is
finally L1+ (8H)2/HP] ' times its initial value, and the
external energy MH—

& is Hp/(8H)' times the internal
spin-spin energy.

To summarize, for H»bH the spin system is unable
to take up the entire energy of the nuclear magnetiza-
tion with respect to the rf magnetic field, and the
transverse decay predicted by the Bloch equations is
partially forbidden. As will be discussed in the next
section such a process is further inhibited by the rapid
decrease of the suitable transition probabilities as the rf
field is increased.

These considerations suggest that in the limit of large
H& the x,y components of the Bloch equations should
be modified. The modification can most easily be
presented in a coordinate system'4 rotating about the
z-axis at the rf frequency cv (not necessarily the reso-
nance frequency) with its x-axis in the direction of the
circularly polarized rf field H~. In such a coordinate
system the modified Bloch equations are

M„=y/M, XII.,].,—M.,/T2„ (9a)

1'„„=~tM„XH.„]„,—~„,/T„ (9b)

M„=ELM„XH.„].„—(~„—~2)/Ti. (9c)

The subscript r denotes a quantity measured with re-
spect to the rotating coordinate system, and H,

„
is the

effective magnetic field. "H,
„

is given by

H,„=
(

Hp [k,+Hii„,—— (10)

2xOT2T28~0((00 ~)x'=
(~—~2) T2T2~+r HpTiT2+1

(11a)

x"=x'T2. '(~o—~) '. (11b)
'4Rabi, Ramsey, and Schwinger, Revs. Modern Phys. 26, 167

(1954), to which the reader is referred for an excellent introduction
to the use of rotating coordinates.

where i„andk, are unit vectors in the x„andz, directions
in the rotating system.

In (9) T2, is of the order of Ti and is a transverse spin-
lattice relaxation time, since, as discussed at length
above, the spin-spin collisions are unable to relax the
magnetization in the direction of a large rf field. T2 is
still the correct relaxation time to use in the y-com-
ponent of (9) because a decay in the y-direction
(rotating frame of reference) involves no change in
energy. Solution of (9) leads to the prediction
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The Lorentzian dispersion predicted by (11a) is in
reasonable agreement with both the shape and order of
magnitude of the observed dispersion at high rf fields.
Unfortunately (11) is quantitatively applicable only at
the highest rf 6elds attainable. To obtain quantitative
results at lower rf 6elds it is necessary to consider the
problem in more detail.

To conclude our discussion of the existing saturation
theories we may mention another defect in the Bloch
equations. As usually written, 4 they predict that the
eGect of the spin-lattice interaction is to relax the
nuclear magnetization toward its static equilibrium
value xsHsk in time T„where k is a unit vector in the s
direction. Actually it is more reasonable to assume that
the magnetization relaxes toward the value xsH corre-
sponding to the instantaneous applied field H. The
theory and experiment in the present paper will be
restricted to the case Ps»Hi so that Hek and H very
nearly coincide in magnitude and direction, and this
consideration is unimportant.

i7if=Xgp. —

We will use the transformations

(13)

where

&=Rv&,=RveR,„,&„

R,„,=exp( —i(ot P, I;,),
Rye=exp( —iO Q, I;„),

(14)

(15)

(16)

0= tan —
'LpHi/(a) —o:s)j. (17)

'z J. H. Van Vleck, Phys. Rev. 74, 1168 (1948)."N. Bloembergen and T. J. Rowland, Phys. Rev. 97, 1679
(1955)."M. A. Ruderman and C. C. Kittel, Phys. Rev. 96, 99 (1954).

2 N. F. Ramsey and E. M. Purcell, Phys. Rev. SS, 143 (1952).

B. Rotating Coordinate Representation

If we neglect the interaction with the lattice, the
complete Hamiltonian of the spin system is"

Ke= gpro p; I,z+gp2Bi(cosset)p, I,,
+g'p'pk&, (r;k 'I; Ik 3r, k 'r, —k I, r, k Ik)

+Pk&, S,kI,'Ik, (12)

where II0 is the dc field, 2II& is the applied linearly
polarized rf field" of frequency ~, and the spin operators
I, are expressed in units of A. All nuclei are assumed to
have the same g-factor and spin; the case of two
magnetic ingredients will be considered later. The last
term is included for generality; evidence for the exist-
ence of such a mutual nuclear interaction in solids has
been discussed by Bloembergen and Rowland" and by
Ruderman and Kittel."The analogous interaction be-
tween nuclei in molecules was first suggested by
Ramsey and Purcell. "

The spin wave function f obeys Schrodinger's
equation:

and
i7—iBPp/Bt=Rve3C„Rye 'Pp= K—.pfp (19)

The unitary transformation R,„&can be regarded as a
transformation to a coordinate system rotating about
the s-axis with frequency a& (note that this is the rf
frequency, not necessarily the resonance frequency ~s).
As above, the subscript r is used to denote quantities in
this coordinate system and R, „

is the effective Hamil-
tonian in the r-system'.

Eye corresponds to a further transformation to a
coordinate system 6xed with respect to the r-system,
whose s-axis coincides with the effective magnetic field
direction, and whose y-axis coincides with the y-axis of
the r-system. 0~ is the angle between the effective
magnetic field H,

„

in the rotating coordinate system"
and the s-axis in the 6xed system. Quantities in this
system are denoted by the subscript p.

The Hamiltonians BC,„andX„in (18) and (19) are
readily obtained from the fact that the operators I;
transform like vectors under the rotations corresponding
to R,„eand Rye. Since the I; occur only in scalar
products the same result can be achieved by applying
the inverse rotation to the other vector of the scalar
product. Thus I; Ik is invariant under these transforma-
tions while the r, j, are transformed under the inverse
rotation. This procedure is simply an algebraic shortcut;
actually the r;k are invariant parameters and the I;
undergo transformation. In this way we get

~er=gPHer'Zj Ij+Pk&j(AjkIj'Ik+&jkIjzIkz)
+time-dependent part, (20)

~ep gP~er PjIjz+gk&j{AjkpIj'Ik+~jkpIjzIkz
+D, k,P;+I~+I;~k-j
+~r kpL(Ij++Ij )Ik.+Ij*(I~+-Ik)j)-

+time-dependent part, (21)
where

A;k ——X,k+ g'p'r; 'k($p, k' —-',),
8; k

—3g'p'r, k '(sp;——k' ——',),

(22)

(23)

A, k, ——Zjk+(-,' cos'0 —-', )(A;k —A;k), (24)

~jkp= (5 cos'8 —s)»k,
Djkp=k slil OB k

E&'yp= ~ slnO cosOB g

(25)

(26)

(27)

~-= IH-I =L~'+(~.--/v)'l (28)

Here I,~ are the raising and lowering operators I,,&iI,
„

having selection rules hM» ——~1 respectively, and gjk
is the 2;-direction cosine of r, A. . The time dependent
parts of these Hamiltonians contain terms like I;+II,~,
I,+k„I;+Ik~, etc. , with time dependences exp(~i~t),
exp(~2'&t).

Then it follows that

—iABQ„/Bt= (—Ace P;I„
+R. KsR. e ')1'.—=BC.,Q„(18)
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We now assume Ho))H, „—bH and apply Dirac
perturbation theory to Schrodinger's equation in the
rotating coordinate systems (Eqs. (18) and (19)$. The
time-dependent part of BC„(or K„)is a nonsecular
perturbation on the time-independent part. It connects
states for which AMq= &1 for one or two nuclei, and
for it to be secular these states must diGer in effective
energy" by &M~~&AIIO or &2Puo—2pkHO. Actually
such states will differ in eGective energy" by about
cyh(H, „&8H),with c=O, 1, or 2, so the condition for a
secular perturbation is not satisfied and the time-
dependent part of X,„canbe ignored for most purposes. "
It will be noted that these time-dependent terms are the
same ones neglected by Van Vleck" in his calculation
of the moments of the absorption line, plus a term
corresponding to the component of applied rf field
rotating in the opposite direction from that of the
rotating coordinate system.

If H, „
is very large (but still much less than 110) the

fourth and fifth terms of K„arenonsecular perturba-
tions, since, being time-independent, to be secular they
must connect eigenstates of the first three terms of 3C p

having the same eGective energy, whereas actually they
connect states diGering in eGective energy by about one
or two times yh(H, „+BH).Under these circumstances
we can ignore these terms and 3'.„conserves M„,the
nuclear magnetization in the eGective field direction. It
should be noted that to ignore these terms the transition
probabilities associated with them must be much
smaller than T& '. Thus this procedure is valid only for
H,„verymuch larger than the resonance line width.

Conservation of M„leads to a system of equations
similar to (9), whose solution in the limit of large H~ is
identical with (11).We do not go into details because
the theory is not applicable to any experimentally
attainable situation. Experimentally we are limited to rf
field intensities comparable to the resonance line width.

C. Canonical Distribution in the Rotating System

In the previous section we obtained a transformed
spin Hamiltonian which was eGectively independent of
time. A time-independent Hamiltonian is convenient to
work with because the concepts of statistical mechanics
can be more easily applied to it and because the effective
energy" of the spin system can change only through the

""ERective energy" will be used to denote eRective energy
with respect to the rotating coordinate system, i.e., with respect to
the time independent part of K„orK,p, not the total energy in
the fixed system, which is no longer a constant of the motion. The
word "eRective" will denote any quantity defined or measured in
the rotating system.

~If H, „&BH it becomes questionable to ignore the time-
dependent part of 3'.„,since then this "perturbation" is larger
than the "unperturbed" part of the Hamiltonian. For the same
reason it may be incorrect to ignore the oppositely rotating com-
p'onent of circularly polarized rf field which is always present
when a linearly polarized field is applied. These considerations are
probably not as important as might be thought, because these
perturbations are very far from secular; furthermore, experimental
evidence discussed below indicates that transitions produced by
these time dependent parts of K,„andK,p are negligible.

spin-lattice interaction. The spin-lattice interaction
terms of the Hamiltonian acquire an additional explicit
time dependence as a result of the transformation to the
rotating system, but if II,

„
is large enough, these terms

can be considered as a small perturbation which
transfers eGective energy between the spin system and
the lattice and eventually determines the value of the
effective energy of the spin system.

As in the statistical mechanics of stationary systems
we consider a Gibbsian ensemble of systems, each
consisting of the solid with the. rf field continously
applied to it. Suppose that the (time-dependent) spin-
lattice interaction is somehow turned oG, arid that the
average expectation values of the lattice Hamiltonian
and transformed spin Hamiltonian (X„)are known. In
the absence of further information the distribution of
states in the ensemble is still highly ambiguous, but the
most probaMe distribution is a canonical distribution of
states with respect to the lattice and the transformed
Hamiltonian. Associated with this canonical distribution
are two temperatures, determined by the canonical
average expectation values of the lattice and trans-
formed spin Hamiltonians. One of these is the lattice
temperature, which is presumably positive in any
physically attainable solid. The other will be called the
eGective spin temperature, which is positive or negative
depending on whether the average expectation value of
the eGective spin Hamiltonian X,„

is negative or posi-
tive. The situation is c]osely analogous to that in the
fixed coordinate system if the spin-lattice interaction is
turned oG and if no rf field is applied. In that case the
most probable state of the system is also represented by
a canonical distribution of states, with lattice and spin
temperatures which are not necessarily equal. Negative
spin temperatures are easily attained (with pulse tech-
niques) in insulating crystals in which the spin-lattice
interaction is very small. In both the fixed and the
rotating coordinate systems the lattice and (effective)
spin temperatures can be diGerent because the spin and
lattice Hamiltonians commute, and it is sensible to talk
about canonical distributions of states only because the
lattice and (effective) spin Hamiltonians are time-
independent (except for some nonsecular perturbations)
in both cases.

We now consider what happens if we turn on the spin-
lattice interaction and wait for a time long compared to
the spin-lattice relaxation time, but short compared to
the time required for the rf field to heat up the lattice
appreciably. In the absence of the rf field and in the
fixed coordinate system, the spin system will approach a
canonical distribution of states with equal spin and
lattice temperatures. In the presence of the rf field, in
the rotating system, the spin-lattice interaction will
change the average expectation value of the eGective
spin Hamiltonian to some quasi-equilibrium value. We
have no rigorous assurance that the spin system will
remain in a canonical distribution of states with respect
to K,„butwe assume that it will. This assumption can
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be regarded as an admission of our ignorance concerning
the system; lacking detailed information, we simply
assume that the system is in its most probable state for
the limit of zero spin-lattice interaction. The actual
effective spin temperature in the steady state is de-
termined by the lattice temperature and the spin-lattice
interaction, and depends on Ho, H~, and co. Unlike the
static case with no rf field, the eGective spin temperature
is different from the lattice temperature and can
actually be negative. The reason for this difference is
that the spin-lattice interaction in the rotating system
contains an explicit time dependence which is not
present in the fixed system.

An analogous problem is that of a gas in a fairly well-
insulated bottle, connected to one or more temperature
baths by heat leaks. To find, say, the pressure of the gas
it is necessary to assume immediately that the gas
molecules are in their most probable state (a Boltzmann
distribution) subject to the constraint that they have
some definite energy (corresponding to the gas ternpera-
ture). The problem is then reduced to 6nding the gas
temperature as determined by the various heat leaks
(corresponding to the spin-lattice interaction) and tem-
perature baths (corresponding to the lattice). If the
bottle is constrained to move it is necessary to transform
to the bottle's coordinate system before applying sta-
tistical mechanics to the gas, in analogy to the rotating
coordinate transformation used here. All of classical
acoustics and Quid mechanics are based on assumptions
similar to those used in this paper since it is always
assumed that matter possesses the same thermodynamic
properties viewed from a suitably moving coordinated
system and in suitably small pieces as it does at rest in a
Axed coordinate system. When temperature, pressure, or
velocity gradients in a gas become too large, this
assumption breaks down (i.e., at low pressures and in
shock waves) and the theory becomes difficult. Likewise,
in the case of spins when the spin-lattice interaction
becomes too large, the assumptions used here break
down and the theory is difIicult.

A rigorous jUstification of this procedure would be
extreme]y dificult, if not impossible. It might be based
on something analogous to the Boltzmann B-theorem.
The least that can be said for this assumption is that
above saturation it is the only simple one that is not
obviously wrong.

The assumption that the spin system is in a canonical
distribution of states with respect to K,„

leads im-

mediately to the conclusion that the magnetization
M, is in the direction of the effective 6eld H,„,just as in

the static case the magnetization M is in the direction of
Ho. The effective external energy of the spin system is
—M„H„=3I„H,„,where M„is—the z, component

of magnetization in the p coordinate system. We define

a spin-spin energy in the rotating system which contains

all the spin-spin terms of K,„:
5css=Z;)s(~, d; Is+It~'I~ I").

&(5e„»= —m. ,H.„+«X»&)
= —M.pH, „L1+(5H)'/H, „'$. (32)

Transforming back to the 6xed system we have (since
M, is in the direction of H,„)

M ~3f„sinO~ cosoit,

3I„~3II„sinO'sine t,

cV.~3f„cos0.

(33a)

(33b)

(33c)

To determine the expectation value of X,„weuse a
simple relaxation assumption to account for the spin-
lattice interaction. The physical reasoning which follows
is justified in more detail and under more general con-
ditions in Appendix B.We assume here that the eGect of
the spin-lattice interaction is to relax each nucleus
independently into its equilibrium state in a time T&.

L~/~tj &(»&&= —(((»)&—Io)/T, (34)

where the left-hand side is the spin-lattice contribution
to the time derivative of the expectation value of I;, and
Io is the static thermal equilibrium value of I„given by

Io= -'sgPI(I+ 1)8/k T. (35)

Here the applied field H can be closely approximated by
H,k (since Hi((Ho).

It might seem more logical to assume that the nuclei
are relaxed along the effective field instead of the actual
applied Geld, so that we should use H„in (35) instead of
H. That this would be incorrect follows from the fact

+ J, H, Van VIeck, J. Chem. Phys. 5, 320 (1937).

The internal spin-spin energy is comparable to the
external energy when the eGective external field H,

„

becomes comparable to the local fields at the nuclei due
to their neighbors (i.e., approximately the line width in
gauss) just as in the static case." In Appendix A it is
shown that

«3C»)) = —$(~H) /H. „'gm„H,„, (3O)

where ((0)) denotes the canonical average expectation
value of the operator 0, and

I(I+1)
(SH)'=-', ((~H) s&.,+

5'y'S

Here ((hH)'&A„ is the second moment of the unsaturated
resonance line as calculated by Van Vleck. 25

The reasoning which leads to (30) is essentially the
same as that used in Sec. III(b) to 6nd the state of
maximum entropy of the spin system after a transverse
Bloch decay, and the (8H)' used there is the quantity
given by (31). The state of maximum entropy of a
system for a given energy is, of course, described by the
canonical distribution of states corresponding to that
energy.

The problem is solved if the value of ((X,„»can be
determined, because we can write
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that the electrons, which are responsible for the re-
laxation, are almost completely unaffected by the rf
field and effectively see only the large field Ho in the s-
direction. Furthermore, if we were to use the effective
field in (35) we would get obviously incorrect predictions
for the dispersion.

Equation (34) implies that T&„the transverse elec-
tronic relaxation time defined previously, is equal to Tj.
This assumption is in accord with theory""" for
metals, assuming the electrons are in a Fermi distribu-
tion of states.

Ke assume that the spin-lattice interaction does not
perturb the spin system cononical distribution ap-
preciably except to bring about a slow change in ((X„))
=(PC.,)), the transformed spin Hamiltonian average
expectation value. The spin lattice relaxation can be
fictionally regarded as a two-step process. The first
process is the scattering of the nuclear spin into a
completely random orientation, in a time T&. The
second process is a scattering of the spin into an
orientation with probability governed by the Boltzmann
distribution of states with respect to the externally
applied magnetic field, in an infinitesimal time after the
first scattering. These two processes correspond re-
spectively to the two terms on the right-hand side of
(34). The change in ((3C,„))with time is the sum of the
separate changes brought about by these two processes.

The rate of change of ((K,„))due to the first (random)
scattering is

[8/Bt jsl z((K,„))=+3II„H„/T,2((Ass))/T, . (—36)

The external effective spin energy —M„H,„(expecta-
tion value of the first term of BC,„)is proportional to the
sum of expectation values of components of the I,, and
is thus expected to decay to zero in time Tj for random
scattering of the spins, corresponding to the first term in
(36).The spin-spin energy ((BCss)), on the other hand, is
quadratic in the components of the I, , and is therefore
expected to decay at twice the relative (logarithmic)
rate of the external energy; thus the factor two in the
last term of (36).

The effect of the second (Boltzmann) scattering is to
change the nuclear magnetization at a rate +Mp/Ti,
where Mo=xoH —xoHplr (in the fixed coordinate sys-
tem). The corresponding rate of increase of the effective
external energy —M.H,

„
is —(Mp/Ti) 'H .The change

in the spin-spin energy is negligible, since the local fields
at the nuclei are random in orientation, to a very good
approximation. Thus the rate of change of ((X,„))due to
the Soltzmann scattering is the same as that of the
effective external energy:

[8/pit jszii((K „))= —3IIpH cosO/Ti. (37)

To obtain the steady-state value of M„weuse (30)
and (32), and set the sum of (36) and (37) equal to zero.

op N. Bloembergen (private communication).

The result is
Mo COSO~

Mop=
1+2(bH)'/H, „' (38)

where 350, is the quasi-equilibrium value of 3E,
„

for
constant Ho, Hi, and co.

The dispersion is given by

or

M, M'p, sinO
x'=

2Hg 2IIi

Mp'r (eio —oo)

2{(pip —oo)o+p'[Hip+2(bH)'j}

(39)

(40)

so that above saturation the dispersion is Lorentzian
and the dispersion derivative at resonance is

~X' Xo&0

BHp 2[Hi'+2(bH)o
(41)

Equation (33) implies that the nuclear magnetic
absorption is zero above saturation. Actually, (33) is an
approximation and M„is not precisely in the direction of
H,„.At any rf level there is finite absorption which can
be predicted by invoking conservation of energy in the
fixed system. Energy is transferred from the spin system
to the lattice at a rate —Hp(3II 3IIp)/Ti. Equating
this to the energy absorbed by the spin system from the
rf field, which is 2~H~'x", we get

or
—Hp(2Hix cot.O —Mp)/2TiHiopi,

y'[Hi'+2 (bH)')HoMo

2( (pi —~o)'+y'[HP+2 (bH)'j} TiH 'pi
(43)

This is a Lorentzian line, of the same width as would be
predicted by the Bloch equations below saturation for
To=y'[Hip+2(8H)'7 '. At resonance (43) agrees with
the asymptotic values of y" given by the Bloch and
BPP theories. The same is true of oG resonance in the
limit of very large H&. This agreement corresponds to
the fact that, for any theory, under these conditions
M,—+0 and p" is uniquely determined by this simple
conservation of energy argument. The fact that all
theories yield the same asymptotic p" means that the
saturation method of obtaining Tj used in Sec. II is
substantially correct. This is not necessarily true if the
maximum absorption derivative, rather than the inte-
grated absorption derivative, is used to obtain T~.
Error in the saturation determination of T~ can also be
introduced by the use of a magnetic field modulation
period comparable with or less than T&, as is usually the
case experimentally. Fast modulation is treated in
Sec. III(e) .

The theory developed above is valid only for large
H,„.If H,„becomes comparable to the value of H~ at
which the absorption begins to saturate, the spin-lattice
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interaction can no longer be regarded as a small pertur-
bation and the magnetization M will tend toward the
g-axis with a value Mo, rather than toward the direction
of H,„.Treatment of the intermediate case would be
extremely difIicult.

The theory is also invalid in the case of large H,„but
small Hi, i.e., in the case of 0~0 or O~~pr (off reso-
nance). In this case the spin-lattice interaction is still in
a sense a small perturbation, but the last two terms of
X,„approach zero. These terms help bring about the
transfer between external and internal effective spin
energy which is required by the assumption of a
canonical distribution of spin states with respect to K„.
If the transition probabilities due to these terms are
smaller than T~ ', then 3f„is conserved and the
treatment at the end of the previous section applies.
The fact that M,

„

is conserved in the limit of small H~
and finite H,„means that M„~M,~MO in this case;
i.e., the nuclear magnetization approaches its thermal
equilibrium value, as is expected on elementary grounds.

We may summarize these limitations with the state-
ment that the theory is valid in the range of H& well
above the level where the absorption begins to saturate,

Some of the predictions of the theory are summarized
in Fig. 6, which shows y" and Bx'/BHp at resonance as a
function of H&. At low fields X" is determined by the line
shape and the Kronig-Kramers relation for zero
frequency:

2
I

"x"(v)dv
Xo (44)

so that
X"(»)= s~vpyog(vo). (45)

The low rf Geld dispersion derivative, Bx /BH p, is also
determined by the Kronig-Kramers relations" and the
line shape. We assume that the line is Gaussian. Using
Eq. (11)of reference 20 (with the factor sr mentioned in
the erratum)" and comparing Eq. (10), reference 20,
with Eq. (15), reference 25, we get for a Gaussian line of
second moment ((hH)')A„.

Bx'/BHo= xoHo/2((&H) )a ~ (46)

This is the low rf field limit assumed in Fig. 6 for the
case (curve a) of pure dipolar broadening (rT, s ——0). If
there exists an exchange-type interaction g, &NO) the
resonance line will be exchange-narrowed and the dis-

persion derivative will be increased (curve b)

The region indicated by the dotted lines in Fig. 6
cannot be treated theoretically, but x" and Bx'/BH p in
this region are expected to undergo a smooth transition
between their low and high rf field values, as indicated.

The solid lines in Fig. 6 for large H~ represent the
predictions of (41) and (43). In the limit of large Hi the
dispersion derivative is Mo/2Hi (assuming Ti Ts,)——
independent of the spin-spin interaction. At inter-
mediate values of H~, for pure dipolar interaction

lO-
I I I I I I III I I I I I I I ill I I I I IIIII I I I I I III'

O.I

x'tg

"(vo)

'ii, Q bc

I I I IIIIII I I I I IIII
-I

Hi =&ty'&i o(;]) Hi Mi&&z

FIG. 6. Qualitative theoretical predictions of y", Sy'/BHp, and
TI~ at resonance for the cases of pure dipolar coupling (curve g),
strong exchange-type coupling (curve b), and two magnetic
ingredients (curve c). y" is in units of Spypvpg(vp), Sy'/DHp is in
units of ypHp/((nH)P)p„, and T&p is in units of T&/10.

t B/B&]szz(X„)= —(Se„)/T„,
"N. Bloembergen, Physics 15, 426 (1949).

(47)

(A. ,s=O), (31), and (41) predict that By'/BHp should
approach a plateau of value 3xoHo/4((AH)')Ap (curve a).
The presence of exchange-type interaction will increase
bH' and thus lower the height of the plateau (curve b).

In the theory outlined above it is implicitly assumed
that parts of the spin-lattice interaction can be included
in the spin Hamiltonian as classical perturbations.
These parts are the Knight shift in metals and the
chemical shift in insulators, accounted for by replacing
Hp by Hp+d, H, and the possible mutual nuclear spin
interactions due to the electrons in the solid, of which
the last term of (12) is an example. We know of no
rigorous justification for this splitting up of the spin-
lattice interaction into stationary and relaxation parts,
but it seems physically quite reasonable.

In insulating crystals, where spin diffusion" usually

plays an important role in the relaxation process, the
theory above may not be directly applicable, although
the qualitative conclusions are apparently correct. Spin
diffusion is expected to be affected by the presence of the
large rf field. More specifically, (34) probably represents
an oversimplification of the relaxation process,

In metals, (34) may also be an oversimplification of
the actual relaxation process. Equation (34) would
almost certainly hold if it were also time-averaged in a
suitable way, but it probably does not represent the
details of the nuclear relaxation correctly. In particular,
the relaxation of neighboring nuclear spins by the
conduction electrons may not be independent, but may
instea'd be correlated in some way, owing to the finite
extent of the electron wave functions. In this case the
reasoning behind (37) would probably still be correct,
but (36) would have to be replaced by the less specific
equation
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where T» is greater than 2Ti (for Tp, ——Ti) for small Hi
and approaches Ti (or in general Tp,) for large Hi.
Equations (30), (32), (37), and (47) yield

Ti,Mp cosO~

3Eop
=

Ti[1+(8H)'/H ']
and at resonance

(48)

T»goHp~X

~H p 2T,[HP+ (~H)']

gP (&i5 rqlk, +&i6k rkI„).S
'e ~"'kAPr((I;+Ik)[CO-S(hk r;k)

+i sin(Ak r;k)+1)
+ (I;—Ik)[cos(hk r, k)+i sin(Ak r, k) —1)}. (51)

I;+Ik commutes with A, kI; Ik and thus does not
contribute much to the decay of ((Ass)) unless the term

B;~I;,I~, is relatively large. Assuming B,~ small, most
of the relaxation of 3'.88 results from the term involving

I,—Ik, with transition probabilities proportional to
2 —2 cos(dk r, k). We assume that the energy contours
in k-space are spherical, in which case k~k'~k, the
Fermi level value of k, and that all directions in

T]p can be experimentally determined by observing
the phase of the dispersion signal relative to the mag-
netic field modulation, as discussed in Sec. III(e)
below.

Equation (47) may appear at first sight to be incon-
sistent with (36), when the spin relaxation is incoherent.
Actually, this is not the case, since ((Xss)) and M„H,„
are related to ((BC,„))by (30) and (32). If we solve these
four equations for T» we get the same expression ob-
tained in Sec. III(e) in connection with the theory of fast
modulation with incoherent relaxation [Eq. (63)].

',Bloembergen32 has suggested a method of calculating
T» in those metals for which the nuclear spin-spin
interaction A;kI; Ik is the predominant term in Xss.
This is the case"" in most of the heavier metals,
probably including copper and aluminum. Equation
(47) can be written (assuming T,=T„)

[8/'dt]sing((X, „))=M„H,„/T, (Xss)/Tss. (50—)

The term M„H,„/Tiin (50) is deduced in the same way
as in (36). Tss ' is a suitable average of the probability
that, of two neighboring nuclei, either one will be Ripped

by an electron without the other. If the electron
wavelength is very short it is expected that the relaxa-
tion will be incoherent and that T„=-,'Ti' as in (36).

T„canbe estimated by considering nearest neighbors
separated by a distance r;&. The important nuclear-
electronic interaction is A[(I;8(r—r;)+Ikb(r —rk)] S,
where S is the electronic spin operator and A is an
interaction constant. For a transition involving k and
k =k+6k as initial and final electronic propagation
vectors this interaction becomes

If it is assumed that there is one electron per atom in
the Fermi gas, then k r;~=3.36 for a face-centered.
cubic crystal and (52) indicates that Tss —,Ti, yielding
almost the same predictions as (41) and (43). Only if
tp r;k &pr/2, or if the conduction band is almost filled and
can be described as an almost empty band of positive
holes with tp r;kerr/2, will there be an appreciable
e6ect due to coherent relaxation of neighboring nuclei.

D. Two Magnetic ingredients

There are two limiting cases to be considered when
there are two or more types of spin in the lattice.

The erst of these is typified by E-centers whose
electron spin resonance is broadened by hyperfine
interaction with the surrounding nuclear spins. Although
the different F-centers in an alkali halide are mag-
netically coupled in theory via nuclear spin diffusion and
direct interaction with each other, in fact such coupling
is negligible-over a length of time comparable to TI
(electronic) because the spin-spin transitions involved
are highly forbidden energetically by the relatively
large local field di6'erences experienced by the different
spins. Then the E-centers must be regarded as decoupled
and the assumption of a canonical distribution of states
with respect to the transformed Hamiltonian aban-
doned. Portis~ has developed an exact theory for this
case.

The other limiting case is typified by two different
nuclear species in the same crystal. In this case the
local field diGerences between nuclei are relatively
small and spin diffusion can take place."Following Van
Vleck we use primes to denote the spins whose resonance
is not being observed; the rf frequency ~ is supposed to
be near the resonant frequency of the unprimed spins.
The spin Hamiltonian is given by Van Vleck." We
transform to a rotating system as before, using the
transformation E,„gin which the sum over the I;, is
carried out over all the nuclei, primed and unprimed.
The transformed Hamiltonian is

X„=gPH, „Q;I;+Pk);(&;kl,"Ik+&; kJ,',&k,)
+Qt k C, kI, ,Ik,
+2 k') j' ~j'k'Ij' 'Ik'+I''k'Ij'IIk'I
+g'P[Hpk„(pp/y')i, +Hik, ] Q,' I,', —(53)

Here g' and p' are respectively the g factor and gyro-
magnetic ratio of the primed ingredient, A; ~ and B; ~

are given by (22) and (23) and

C;k =&;k+(1 35ik')gg'P'rgk '— (54)

k-space are equally probable for the initial and final
.states. T~g is then proportional to the average of
2 —2 cos[(k—k') r;k] over all directions of k and k',
keeping k= k'= k, and is normalized by the require-
ment 2 &&~-,'l'& as k ~~. In this way we get

Tss '~2T '(1—[1—cos(2k~r;, )]/2k 'r" } (52)
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In (53) we have neglected time-dependent terms as
before. We can also neglect the term g'PHi Q Ip, which
is nonsecular if ~&p y'—Hp~ is much greater than the
resonance line width of the unprimed nuclei. The term
involving P I;, then commutes with the rest of the
Hamiltonian and can be ignored, since the unprimed
spins are not aGected directly by the rf field.

The remaining terms of the Hamiltonian are secular
perturbations and do not commute with each other.
This means that they are coupled together, with the
rather surprising result that effective energy can be
transferred from the unprimed system to the primed
system. When rf energy is absorbed by the unprimed
spins, part of this energy will be transferred to the
primed system via the interaction P C, p I;,Ii, , This
energy will be entirely in the form of spin-spin (internal)
energy; the external energy of the primed spins (ex-
pectation value of the last term of K,„)will be un-

changed. The average populations of the primed spin
levels will remain at their equilibrium values, but the
primed spins will become more ordered in orientation
with respect to their local fields.

The statements in the previous paragraph may appear
to contradict the usual assumption that two diferent
nuclear magnetic ingredients in a solid interact entirely
independently with the rf field, from which it would
follow that the primed system is unaGected by rf power
at the resonant frequency of the unprimed system.
Actually this assumption is not quite true, since the
spin-spin energy of the primed system evidently in-
creases in this case. For most purposes this energy is
negligibly small compared to the external energy (in the
fixed system) of the primed system, which is unafFected

by the rf field. Only in the present case, where effective
energy is the important quantity, will the spin-spin
energy be important, and then only in determining the
behavior of the unprimed nuclei.

As before we assume that at high rf levels the spin
system is in a canonical distribution of states with re-
spect to the retained parts (all but the last term) of the
electively time-independent transformed Hamiltonian
3C,„.As a consequence of this assumption, the part of the
nuclear magnetization due to the unprimed spins is in
the effective Geld direction with magnitude 3E„while
that due to the primed spins remains at its thermal
equilibrium value in the s-direction.

The effect of the unlike neighbors can be expressed in
terms of the ratio (5H)'/H, „'of internal spin-spin
energy to external (unprimed) spin energy. In Appendix
C it is shown that

(8H)'=-'((»)') +I(I+1)(fNA'y') '

x(E; .~,'+2,' '~,")+((»)').-
+p(f'/f)((»)')v, (55)

where ((»)') is the contribution of the unprimed
ingredient to the second moment" of its resonance,
((»))„is the contribution of the primed magnetic

ingredient to the second moment of the unprimed
resonance, ((»)')„is the contribution of the primed
ingredient to the second moment of the primed reso-
nance, g is the total number of both ingredients, and
fN and f'N are the numbers of unprimed and primed
nuclei respectively.

If the relaxation times of the two types of nuclei are
equal the quasistatic equilibrium value Mo, of the
unprimed magnetization M„is given by (38) using the
same reasoning as before, with yo taken to be the
unprimed contribution to the static susceptibility. If the
relaxation times of the unprimed and primed nuclei are
Ti and T,', then it can be shown (Appendix C) that

Mpp=Mp coso~(1+H„'L2(5H)'„+2(5H)'„Ti/Ti'
+((»)')..(1+T /T ')1}-', (56)

where (8H)'„is equal to the first two terms of (bH)'
LEq. (55)], (8H)'„equals the third and fifth terms of
(5H)', and Mp is the unprimed contribution to the static
equilibrium magnetization.

As before, the theory is valid only for rf field levels
above saturation, and if the spin-lattice interaction
results in correlated scattering for neighboring spins the
remarks at the end of Sec. III(c) apply.

The predicted behavior of y" and Bx'/BHp at reso-
nance for a crystal with two magnetic ingredients is
shown in Fig. 6. The absorption is as before, except that
g(vp) may be different and the parameters of the
saturation curve refer only to the unprimed nuclei. The
predicted dispersion shown is that for a crystal in which
the observed (unprimed) nuclei are in the minority, the
relaxation times Ti and T~' are comparable, and the
absorption is gaussian below saturation. The plateau in

Bx /BHp above saturation is reduced relative to that for
the pure case (curve a) because of the additional spin-
spin interaction of the unlike nuclei. The line shape
above saturation is the same as for one magnetic
ingredient, with a suitable increase in (hH) .

E. Fast and Intermediate Modulation

When the period of the magnetic field modulation
becomes comparable to the spin-lattice relaxation time
the observed absorption and dispersion signals above
saturation will dier from those obtained if T~ is very
short. The same remark applies if the rf amplitude or
frequency is modulated, In solids it is difFicult to avoid
modulation eGects because; except for the heavier
metals, the nuclear relaxation time at 300'K is greater
than 10 milliseconds, requiring modulation frequencies

of 10 cps or less. Such low modulation frequencies are
seldom used in practice, because of noise and stability
considerations. This is evidently why the nonsaturation
of the dispersion reported here has not been previously
observed.

Another reason for considering fast modulation is that
by so doing it is possible to obtain the spin lattice
relaxation time. This possibility has been exploited by
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Halbach, "who has developed the theory of fast mag-
netic field modulation for systems obeying the Bloch
equations.

Theories" of fast modulation based on the assump-
tion of a spin temperature lead to incorrect results, even
for systems obeying the Bloch equations. In these
theories it is assumed that, for eo Ti))j., the spin
temperature is that corresponding to the average values
of Hp, Hl, and co. Actually, for Tl '«~ «pHl the
nuclear magnetization will remain in the direction of the
effective field, and thus its s-component and temperature
will vary sinusoidally with the s-component of the
eGective field.

In this section we treat only modulation of the
magnetic field IIp. Frequency modulation of the rf field
is equivalent, and amplitude modulation of IIl can be
treated similarly. We assume that c' «pHi and that cu

is much smaller than the unsaturated line width, so that
modulation eGects of the type considered by Karplus'4
are negligible.

The applied magnetic field is

H = (Hp+H cospi„t)k+ (2Hi cos~t) i. (57)

In addition to the explicit time dependence of H in (57),
co also increases or decreases very slowly in time as the
spectrometer sweeps through the resonance line.

In general the x-component of magnetization is (to
first order)

M, = (M,'+M, i' cosp~ t + M p' sinpr t) cosset

+(M "+M,i" cospi t+ M,p" sinp~ t) sin~pt, (58)

where M, ', M i', etc. are constant in time (or vary only
very slowly as pi is varied).

The apparent dispersion derivatives are defined as

Bg i'/BH p M„'/2H,H, —— (59a)

Bgp'/BH p M,p'/2HiH„, —— (59b)

Bxg"/BH p= M, i"/2HiH, (59c)

Byp"/BH p
=M.p"/2H iH„. (59d)

Bx,'/BHp and Bz,"/BH p are the apparent dispersion and
absorption derivatives observed when the lock-in de-
tector is adjusted in phase with the modulation, and
Bxp'/BHp and Bxp"/BHp are the apparent dispersion and
absorption derivatives observed when the lock-in de-
tector is adjusted 90' out of phase (in quadrature) with
the modulation.

The Hamiltonian is transformed to a rotating system
as before, but 0 and H,„depend on time sinusoidally
with frequency ~ . This frequency is so low that it
ir.,)uces no appreciable transitions between the eigen-
states of BC,„,and it can be regarded as a reversible
adiabatic (slow) perturbation of the spin system (not
the whole system, as pi T»1). It is then reasonable to
assume as before that the spin system remains in its

'4 R. Karplus, Phys. Rev. 73, 1020 (1948).

highest entropy macrostate; i.e., in a canonical distribu-
tion of states.

In Appendix 3 it is shown that this assumption leads
to the equation (for one magnetic ingredient)

M „H,„2((X'ss))—((&-))=—((~"))=
dt dt Tl

Using (32) gives

Mp cosOH, „BH,„—M, — . (60)
Bt

Equation (60) also follows directly from the first law
of thermodynamics" for the transformed Hamiltonian
dU„'=dQ, „+M,dH„, where U,„'is the effective
energy of the spin system ((K,„)),and Q„is the efFective
heat transferred from the lattice to the spin system via
the spin-lattice interaction. Application of thermo-
dynamics to K,

„
is valid because the changes in 3C,„are

reversible (slow) and the coupling to the lattice is
assumed weak.

The assumption of a canonical distribution of states
implies as before that the magnetization is in the
direction of H,„with magnitude M„,and that ((Xss))
= —M, f(8H)'/H, „].Substituting into (61) we get

M, p
—(M, p

—Mp——p)/Ti p

M.,H,„H,„'L1/H,„'/(8H)'] ', (62)
where

Tip ——Tir 1+ (8H)'/H, „']$1+2(8H)'/H,P] ', (63)

and Mp, is given by (38).
Similar reasoning shows that when two magnetic

ingredients are present (62) still holds, and Mp, and Ti,
are given by (48) and (56). If the spin-lattice relaxation
is correlated between neighbors the considerations at the
end of Sec. III(c) apply, and T» is the same quantity
introduced there. Mp„is again given by (48) and T» can
be empirically determined as described below.

If T» is large compared to the time taken to sweep
through the entire resonance, we can neglect the term
(M, p Mpp)/Ti, in (62). Assu—ming that initially p~ is
well off resonance (~Hp —pi/y~&&5H, Hi) and &M„

M, = Mp, we get
&Mp

M,p=
I 1+(pH)P/H ']' (64)

3 W. P. Allis and M. A. Herlin, Thermodynamics and Statistical
3fechanics (McGraw-Hill Book Company, Inc. , New York, 1952),
Eq. (48-5).

d (+M„H,„Mpco—sOH, „—2((BCss)))—((&»})=
dt

a
H,„.(61)
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Mp sinO/2Hi
BXi'/BHp= &B/BHp

$1+ (BH)&/H, „'gl

BXp'/BH p BXi"/BH p BXp"/BH p 0.

(65)

(66)

1 t BMp q

~

—M,+H.
or Ti, ( BHp)

(69)

Here BMp, /BHp is evaluated for Hp Hp. (68) and (69——)
are obtained by substituting (67) into (62) and setting
Mp~= (H cosa& t) BMpp/BHp+Mp, ~

The apparent dispersion derivatives are t from Eqs.
(33), (58), (59), and (67)$

Bxi'/BH p
——Mi' sinO'/2HiH

—Mp, sin'O~ cosO'/2Hisr (70)

Bxs /BHp= Mp slnO/2HiH

At resonance,

Bxi /BHp= (1+or~ Ti, ) Bx /BHpr

BXp /BHp=or~Ti&BXi /BHp.

(71)

(72)

(73)

Here BX /BHp is the true dispersion derivative at reso-
nance in the limit of slow modulation. Equation (73)
shows that the relaxation time T~p can be experimentally
determined from the ratio of the in-phase to the
quadrature dispersion signals, and the true dispersion
derivative can be calculated from (72). This method of
measuring the relaxation time was previously suggested
and applied to liquids by Halbach. "Similar eR'ects have
evidently also been observed by Portis and Shaltiel. "It

&' A. M. Poitis and D. Shaltiel, Phys. Rev. 98, 264(A) (l955).

The plus or minus sign in (64) and (65) depends on
whether ~ is initially less or greater than the resonance
frequency. This is the case Bloch4 calls adiabatic fast
passage. The present analysis shows that to observe a
fast passage signal it is not necessary to sweep through
the resonance in a time short compared to T2, as previ-
ously supposed, 4 but only in time short compared to T&.

In the case of solids, where T~))T2, this makes observa-
tion of fast passage signals much easier. It is, of course,
still necessary to use rf levels well above the saturation
level.

If T~p—Tj is short compared to the time taken to
pass through resonance, we can regard co as fixed, and
the first-order solution of (62) is

M„=Mp,+Micosor i+Ms sinai i, (67)

where Mop is the quasi-steady-state value of M, p Mop
corresponding to HO=HO. M& and M2 are given by

Mi ———(1+1/or 'Tip') '

Mp H cosO H„BMp,)
X

/

— f, (68)
E Her[1+He. /(BH) J ar Tip BHp

will be noted that the relaxation times can also be
measured by modulating the rf power level, as is some-
times more convenient for microwave studies of para-
magnetic relaxation.

The apparent absorption derivatives are obtained
from conservation of energy considerations in the 6xed
coordinate system. The rate of transfer of energy from
the spins to the lattice is to a good approximation
Hp(Mp —M.)/Ti. Conservation of energy" for the spin
system then requires that

l9—((K,))= —Hp(Mp —M,)/Ti —M.
dt Bt

(74)

IV. COMPARISON VfITH EXPERIMENT

We have not made a detailed analysis of the observed
line shapes, but it appears that they are in agreement
with the predictions of the theory. In the metals the
absorption and dispersion derivatives above saturation

Using the fact that ((K,))~HpM, and BB/Bt~BH/Bi,
and averaging over one rf period, we get

H p(M p M,)/T—i
= —orHi(M, "+M,i" cosor„i

+ M,p" sinar„t)+HpM, . (75)

Equations (33), (58), (59), and (75) can be solved for
the apparent absorption derivatives. The result is
complicated and will be omitted. The absorption signal
depends on both the modulation frequency and phase.
Since it is not customary to adjust a lock-in detector
with extreme care, the phase of the observed signal in
previous measurements of T~ by saturation must be
regarded as uricertain, and the reported values of Tj
correspondingly uncertain. The resulting errors in T&
are not likely to be greater than a factor of two or three
because the onset of saturation will still occur at level
Hi 2fy'Tig(rp)] *' corresponding to the point where
the rf transition probability is comparable to the spin-
lattice transition probability. Fast modulation will only
change the details of the absorption saturation and
apparent asymptotic absorption at resonance for
large II~.

The predicted dependence of T~p on rf 6eld is shown
in Fig. 6, assuming uncorrelated spin-lattice relaxation
between neighbors. In the limit of large 8&, T&, equals
Ti (or more generally Tp, , here we assume as usual
Ti Tp,). At the va——lue of Hi corresponding to the knee
of the dispersion curve T» undergoes a transition to
Ti/2 for a single magnetic ingredient, or to some other
value for two magnetic ingredients as indicated by (48)
and (56). Below saturation the observed dispersion
signal is expected to be in phase with the modulation
and to correspond to the true dispersion derivative. The
observed T» as defined by (73) is then expected to
decrease in some unpredicted way corresponding to the
dotted lines in Fig. 6.
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FIG. 7. Slow passage dispersion derivatives at resonance per
resonated nucleus, as a function of rf power, inferred from the data
of Figs. 2 and 3. The units of E'Bx'/BEIo are the same as i'n

Figs. 2 and 3.

are very nearly Lorentzian" and have the expected
width. The apparent dispersion derivatives in NaCl at
large rf fields appear to be in agreement with the theory,
assuming co Ti))1 and, for the impure NaCl, assuming
Ti short compared to the few minutes taken to sweep
through the resonance, or, for the Harshaw NaCl,
assuming T& comparable to the time taken to sweep
through the resonance.

The observation of the adiabatic fast passage4 signal
in the Harshaw NaCl is evidence that we were justi6ed
in neg1ecting the time-dependent terms in K,„and3C„
LEqs. (20) and (21)j. If these terms could induce
transitions among the diferent eigenstates of the time-
independent part of the transformed Hamiltonian then
the magnetization in the s,-direction, 3f„,would be
destroyed when co passed through resonance. The obser-
vations on the Harshaw NaCl indicate that the relaxa-
tion time of M„produced by these terms is greater than
about one minute, so that they can be neglected for
most purposes.

We now reconsider the absorption data of Fig. 1.In the
limit of large Hr, (43) indicates that x" should approach
goHo/2TryHrs. In the limit of small Hr the Kronig-
Krainers relations indicate that y" should approach
rsorxovog(v), where g(v) is the normalized unsaturated
line shape. An attempt has been made to draw these
asymptotes for the data of Fig. i. The asymptotes
should cross at the value of H, given by -', y'Hr'T rg(vo) = 1.
In this way we get 5.5 milliseconds for T& in aluminum
and 3.55 for copper. Since it is uncertain whether the
asymptotes drawn in Fig. 1 are the true ones these
values of T~ Inust be regarded as upper limits. In
addition, inaccuracies in the absorption data may
introduce as much as 20 percent error in T~. These
values of T& are not necessarily more reliable than those
obtained in Sec. II, and do not appreciably alter the
conclusions reached there concerning the electronic
structure. They lead to values of eoPvm*/m of 220 for
aluminum and 240 for copper.

The dispersion data of Figs. 2 and 3, together with
(72) and (73), yield values of the true dispersion

or
Bg /BHo= 0.3xoHo/((AH) )A (77)

N 'Bx'/BHo=0. 6orI(I+1)voy/3kT((&H)s)„„, (78)

where ((AH)')A„ is the second moment of the line. If the
line were assumed to be Gaussian the factor in (78)
would be 1.0 instead of 0.6. In copper (78) predicts a

' I. Solomon (private communication). We are indebted to Dr.
Solomon for permission to quote him prior to publication.

derivative contribution per nucleus shown in Fig. 7.
Also shown in Fig. 7 is the relative dispersion derivative
per proton for protons in water doped with paramag-
netic impurity. This is the same 820 line shown in
Figs. 2 and 3. To get the absolute magnitude of
X 'Bx'/BHo for comparison with experiment we can use
either the H~O data or the aluminum or copper dis-
persion derivative below saturation as a cali,bration.

In order to use the proton dispersion as a calibration
it is necessary to assume a value of T&rr/T&II in (S).
YVangsness and Bloch22 predict that this ratio is unity
for protons in water relaxed by paramagnetic im-
purities, as considered here. The same result follows""
from a somewhat more general theory of Kubo and
Tomita. " Solomon' has recently measured T~II and
T2~, using spin echo techniques for protons in water
containing Fe ions. For Fe concentrations up to that
required to reduce T& to one millisecond he 6nds that
T,rr/T» ——1.0+0.03, in agreement with theory. Un-
fortunately the dispersion derivative observed in water
in Fig. 7 is inconsistent with that observed below
saturation in copper and aluminum (which is rigorously
determined by the Kronig-Kramers relations and the
unsaturated absorption line shape) unless we assume
Trlr/Tsrr 2. Thus it appears that either the errors in
the data are greater than the conservative estimate of
&20 percent, or that there is something wrong with the
theory of nuclear resonance in liquids. The latter
possibility should not be taken too seriously in view of
the rather preliminary nature of the data, but it may be
that the high concentration of paramagnetic impurities
(~1 percent) could cause a decrease in the intensity of
the dispersion signal because the rms value of the rapidly
fluctuating local fields seen by the nuclei is larger than
the appli. ed field Ho.

In view of this difficulty we adopt the less accurate
(but theoretically more rigorous) alternative of using
the dispersion signal in aluminum and copper below
saturation as a calibration. We approximate the line
shape with an inverted truncated parabola:

g(v) =3o-s(u' —v')/2 for v'(a'
g(v) =o for p2) g~.

This is an excellent approximation for aluminum and a
fair one for copper, which has a more nearly Gaussian
resonance line than aluminum. Inserting (76) into the
Kronig-Kramers relations and evaluating the second
moment leads to
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dispersion derivative which is expected to be slightly too
small, because of the more nearly Gaussian shape of the
copper resonance.

In aluminum the predicted second moment ((AH)')s,
is 7.5 gauss, neglecting possible anisotropic electronic
coupling" between nuclei. Gutowski and McGarvey'
report an experimental value of i0.5 gauss' and Row-
land" a value of 8.7 gauss. ' We assume a value of 9
gauss. ' In copper Gutowski and McGarvey' report that
experimentally ((AH)')A„ is 6.3 gauss s in reasonable
agreement with their theoretical prediction of 5.6 gauss.
We use their experimental value. Corrections' to
((AH)')A„which depend on T, are negligible compared to
the other approximations and uncertainties in the
theory.

We use the aluminum dispersion derivative as a
primary calibration, and assume that its experimental
value (upper horizontal arrow in Fig. 7) is given cor-
rectly by (78). The copper dispersion derivative below
saturation is then somewhat greater than the prediction
of (78) (lower horizontal arrow), as expected. The
discrepancies between the experimental points for
aluminum at small H& are almost certainly due to ex-
perimental error.

The dotted lines in Fig. 7 are the predicted high rf
6eld asymptotes for the dispersion derivatives, again
using the low rf 6eld aluminum dispersion as a calibra-
tion. The predicted asymptote is X 'By'/BH p~
yeas/2EHts, as obtained from either (10) or (41), as-
suming T~= T2,. The solid curves in Fig. 7 for large H~
correspond to the prediction of (41), taking (BH)'=3.4
gauss' for aluminum and 5.0 gauss' for copper. In
aluminum the plateau predicted for By'/BHs at inter-
mediate fields is not resolved, owing to the relatively
small ratio of Tt to (yBH) ' compared to that assumed
for the predictions of Fig. 6. In copper the plateau
evidently nearly coincides with the value of By'/BHs
below saturation.

In Fig. 8 are plotted experimental values of T»
obtained from (73) and the data of Figs. 2 and 3. For
large H& the observed T» values agree fortuitously well

with the values of T~ obtained in the beginning of this
section, and disagree with the values of Tj in Table I.

The behavior of T» is in conflict with (63), which is

based on the assumption of incoherent relaxation of
neighboring nuclei implicit in (35). If this assumption
were correct T» should reach a plateau of about Q TI p at
the value of H, ( 1 gauss) at which the intermediate
plateau of the dispersion derivative occurs. Such a
plateau apparently exists but the value of T]p is too
large. Such a large discrepancy cannot be explained by
coherent nuclear relaxation unless the electronic band
structure is appreciably diferent from the free electron

' T. J. Rowland (private communication). This is the average
value of two runs and is thought to be at least 10 percent accurate.
The accuracy is difIIcult to estimate because of uncertainties in the
wings of the line.

where T2, is 5.5 milliseconds for aluminum and 3.55
milliseconds for copper, and n is 1.7 for aluminum and
1.3 for copper. Ts, is used in (79) because Tt, is expected
to approach T2„the transverse spin-lattice relaxation
time, in the limit of large II~ and at resonance.

If we assume that T~= T2, as would be indicated by
the values of TI obtained at the beginning of this
section, (49) predicts the same dependence of By'/BHp
as before (solid lines in Fig. 7) if we take (hH)'=4
gauss' for aluminum and 7.7 gauss' for copper.

A third interpretation of the data obtains if we as-
sume that the values of T& in Table I are correct. This
assumption is in convict with the prediction" "T~——T2,
for a nucleus in a Fermi gas of electrons. The predicted
asymptote of By'/BHs is increased by Ts./T& and (41) is
in reasonable agreement with the data if we take
(BH)'=5.9 gauss' for aluminum and 10 gauss' for
copper.

We now estimate the theoretical value of (BH)'. If we
assume 3;t.——0, (BH)s is predicted by (31) and (55) to be
2.5 to 3 gauss' for aluminum and 2.85 to 3.1 gauss' for
copper. The lower limits of these estimates correspond
to the classical dipolar interaction between nuclei and
the upper limits correspond to the fact that the ob-
served' "second moments of the resonance line are ten
to twenty percent larger than their theoretical values,
possibly because of additional psuedo-dipolar" coupling
between nuclei via the conduction electrons.

It is clear that the observed values of (BH)' cannot be
explained by classical dipolar coupling alone. Ruderman
and Kittel have calculated the magnitude of the ex-

change-type coupling between nuclei due to the con-
duction electrons; the result of their calculation can be
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FIG. 8. The relaxation time TI~ as obtained from the 41 cps data
of Figs. 2 and 3.

s9 K. Kambe, Phys. Rev. (to be published).

approximation with one electron per atom. We do not
know the reason for this behavior.

Since the discrepancy in T» is evidently real, at least
in the case of copper, we are forced to use the more
empirical approach described at the end of Sec. III. For
H&) i gauss, T» can be approximated by

Ts,(1+(BH)'/H ']$1+n(BH)'/H ']—' (79)
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written fusing Eq. (2)j:
SL2k r;icos(2k r, i) —sin(2k r&i)) (mvp) '

A;I,—— i i
. (80)

8x'm*r, i, '(Ti;Til, )lkT E 3 )
T» and T» are the relaxation times of nuclei j and k,
and the relaxations represented by these times are
assumed due only to the S-character of the electronic
wave function near the Fermi surface; if the electronic
P-character contributes to the relaxation (80) estimates
too large a value for A;~. To obtain (80) Ruderman and
Kittel also assume that the electronic energy contours in
k space are spherical, corresponding to an effective mass
m* and a wave number k at the Fermi level.

For m*=m and the values of Ti in Table I, (80)
predicts that h 'A;I, =80 for nearest neighbors in
aluminum and h '2;A, = 140~ for nearest Cu" neighbors
in copper. These values lead to additional contributions
to (8H)' due to nearest neighbors only of about 0.3
gauss' for both aluminum and copper. To agree with
experiment we have to assume that A, l, is about 2
times its theoretical value in aluminum, and about 3
times in copper. These factors are rather large, but
might result from a small e8ective mass or a complex
band structure. An exchange-type interaction of this
magnitude might still be small enough to cause rela-
tively little exchange narrowing of the unsaturated
resonance, as is observed. Unfortunately for this inter-
pretation, Kambeas has predicted theoretically that in
copper m*—m so that an anomalously large A, I, is not
expected.

We may summarize this section by saying that the
theory agrees fairly well with experiment provided we
assume that the exchange-type coupling constant A, ~ is
two or three times greater than its theoretical value, and
that the relaxation of neighboring nuclear spins is
coherent to a degree considerably greater than would be
expected from simple considerations. These observa-
tions are consistent with the assumption of an almost
filled or almost empty band with a small effective mass.
There appears to be no independent support for such an
assumption. If we assume instead a simple electronic
structure with one electron per atom and m*=ns, the
agreement between theory and experiment is not so
good, but is considerably improved over that of previ-
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Fro. 9. Rotary saturation run on protons in water heavily doped

with manganese ions. HI was thought to be 3.0 gauss, H was about
0,6 gauss, and the magnetic Geld modulation was 1 gauss peak-
to-peak.

ous' ' theories of saturation as applied to solids. Finally,
we should re-emphasize the fact that the interpretation
of this section is based on a questionable calibration,
owing to the disagreement of the proton calibration
with the other data.

V. ROTARY SATURATION

The eGect which we have called rotary saturation was
suggested by the previous use of the rotating coordinate
system representation. Much of the theory above will be
useful in treating this effect in solids, but it is not
necessary to understand Sec. III in order to understand
rotary saturation, as it is also a consequence of the
Bloch equations.

The e8ect is observed in a liquid obeying the Bloch
equations as follows: the dispersion derivative signal is
observed at resonance well above saturation, using a
magnetic field modulation amplitude H which is a
sizable fraction of the rf amplitude H~, and a modulation
period ~ ' much larger than T, and T2 (or T2, in the
case of a solid). An audio-frequency magnetic field of
frequency co, and amplitude" H„oriented in the s
direction, is also applied to the sample. When the audio-
frequency approaches the frequency

co =yH, kg,
the dispersion signal is observed to decrease, and it goes
through a minimum when the condition (81) is satisfied.
The frequency pH, „

is the classical nutation frequency
of the nuclei in the rf magnetic field.

Figure 9 shows a rotary saturation run obtained with
water heavily doped with paramagnetic (Mn~) ions.
The dispersion minimum frequency of 12.75 kc corre-
sponds to the proton resonance frequency in a field of
3.0 gauss. Search coil measurements indicated that in
the run of Fig. 9, H~ was 3 gauss within the probable
experimental error; these measurements of H& were
rather inaccurate because of the uncertain geometric
factors involved. Actually the run of Fig. 9 was used to
calibrate the rf field for use in the other runs reported in
this paper, and the rf field in this run was therefore
assumed to be 3.0 gauss. The theoretical justification for
this assumption will be given below.

Rotary saturation can be understood by transforming
to the rotating coordinate system. In Fig. 10(a) is shown

H,„during a positive peak of the 14 cps magnetic field
modulation. The Bloch equations predict that in the
absence of the applied audio field and in the limit of
large H~ the magnetization will be approximately
in the direction of H„with a magnitude M„
=&0 cosOT2~/Tia. At the negative peak of the modu-
lation the situation depicted by the dotted arrows in
Fig. 10(a) applies. The observed rf dispersion signal is
proportional to M„.

The action of the audio field H in the rotating

~Throughout this paper, peak values of the audio magnetic
Geld will be used.
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coordinate system can be seen by analogy to ordinary
saturation in the fixed coordinate system, Fig. 10b. If
0~90' the correspondences H,„+H—p, Mpv~Mp, and
H,—+2H» apply, and the spin relaxation processes are
almost the same in the two coordinate systems (identical
if Ti Ts——as is frequently the case). In ordinary satura-
tion the rf field 2H». reduces the amplitude of M, to
some value less than its equilibrium value Mo. In rotary
saturation the audio field H reduces the amplitude of
3f

„

to some value less than its quasi-static equilibrium
value Mo, . As a consequence the observed dispersion
signal is correspondingly reduced, as in Fig. 9. Power is
also absorbed from the audio field, but this absorption is
normally too small to observe 'directly.

Rotary saturation can also occur off resonance, for

~
Hp oi/p

~

H—i, although it is most directly observed
at resonance. As before, the audio 6eld is most effective
in reducing the magnetization M„and the dispersion
signal when the condition co =pH,

„
is obeyed. The

effectiveness of the audio field is reduced by a factor
sin'0~ since only the square of the component of H,
perpendicular to H„acts in the double saturation.
Some rather complicated dispersion derivative traces
can be obtained by using various fixed values of co,

Myp

Hg,
Mop

Mz p Heq

I&

M
&,

Ho
Mz

2Hi

(o) ROTARY SATURATION (b) ORDINARY SATURATQN

F»G. 10. Explanation of rotary saturation.

greater than yH». These signals all appear to be con-
sistent with this simple picture.

Rotary saturation can be treated theoretically in
liquids by transforming to a doubly rotating coordinate
system, '4 the first rotation being about Ho at frequency
co, the second about H,„atfrequency co,. We ignore the
circularly polarized component of H which rotates at
frequency 2' in the doubly rotating system, and we
also ignore the time dependent parts of the relaxation
terms (involving Ti and Tp), which vary sinusoidally
with frequency ~,. The resulting expression for M„is
similar to that for M, as predicted by the Bloch equa-
tions for ordinary saturation, with the substitutions (for
0 90') Mp +Mpp, Hp —+H„,2H—i +H, M.~M, p, pi~( „—
T, +Ts, and T '—+'—(T '+Ts '). T-hus the minimum
of M„and the dispersion signal should indeed occur
when co,=yH, „,which near resonance corresponds to

a= 'YH» ~

The time dependent parts of the transformed Bloch
equations will introduce some error in this solution and
are probably responsible for the asymmetry in the run of
Fig. 9. They will probably not introduce more than a
few percent error in the determination of H» by this
method.

z
O
Ch

LJJ 0.5
0.
EA

Ch

In Fig. 11 are shown some rotary saturation runs in
aluminum, for various values of H». In solids the line
width is determined by the static dipolar interaction
among different spins rather than by collision broaden-
ing as in the case of liquids. For low rf fields the dipolar
interaction displaces the minimum to a frequency above
yHi (indicated by arrows in Fig. 11), but for large Hi
the minimum very nearly coincides with the predicted
nutation frequency.

Rotary saturation in solids can be treated theoretically
in the rotating system in the same way that ordinary
saturation was treated by BPP, because the analogy of
Fig. 10 also applies to the case of solids. The effective"
energy absorbed per second by the spins from the audio
field is (for 0~90')

//
gMxa Ha ) (82)

where x " is the imaginary part of the audio suscepti-
bility in the s, or x, (approximately) direction. Since the
system is assumed to be in a canonical distribution of
states with respect to X,,„,for small H„we can write

where M p, /H. „
is the rotary analog of yp, and f(v,) is a

normalized shape function similar to that defined by
Broer.4i 4' (83) is consistent with a rotary version of the
Kronig-Kramers relations and can be derived in the
same way as the analogous equation for ordinary
paramagnetic resonance.

The effective energy absorbed per unit time by the
lattice from the spin system is t from Eqs. (37), (47),
and (48))

= (M.p Mpp)H, „L1+(pH)P/H,„s—)/Ti, . (84)
"L.J. F. Broer, thesis, Amsterdam, 1945 (unpub1ished); and

Physica 10, 801 (1943).~ A. Wright, Phys. Rev. 76, 1826 (1949).
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FIG. 11. Rotary saturation runs in pure aluminum. The audio
amplitude EI, was about 2 gauss, the modulation amplitude was
2.5 gauss peak-to-peak, and the resonance frequency was about 7.6
megacycles. The arrows indicate the frequency yPi/2rr for the
various Iuns.
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double saturation data for aluminum. HI was 4.3 gauss, the
modulation was 2.5 gauss peak-to-peak, and go was about 7.6
megacycles. The arrow indicates the frequency pH&/2s. .

Here ((R.,))s= Ms,H. ,[1+(8H)s/H, „s],the quasi-equi-
librium value of ((BC,„)).

In the quasi-steady state the thermal rate of decrease
of ((X,„))given by (84) must equal the rate at which
(effective) energy is absorbed from the audio magnetic
field, given by (82). If we assume, following BPP, that
(83) holds under the substitution Ms,~M„in arbi-
trarily large H, we get

3f,p/3/ass {1+tsH, '(u, sf(v——g) Tr v H,„'
X[1+(5H)'/H, '] '} '. (85)

The observed rf susceptibility is thus reduced by a
factor equal to the right-hand side of (85).

Actually, the assumption that M„canbe substituted
for Ms, in (83), for arbitrary H„is not justified. This is
the same erroneous assumption made in the SPP
theory' of ordinary saturation, as discussed in Sec.
III(a). Equation (85) is expected to hold only for small
H., where M„/Ms, 1.

The shape function f(v,) can be determined experi-
mentally by making a series of runs at constant HI and
different H and rs, and using (85) to determine
f(v,)Ti,[1+(8H)'/H, „']'. Data obtained in this way
for aluminum and copper are shown in Figs. 12 and 13.
In drawing the experimental curve (solid line) through
these data we have given the greatest weight to those
points obtained at low audio power levels, since (85) is
expected to be more accurate at these levels.

Integration of the solid curves in Figs. 12 and 13
yields values of Ti,[1+(8H)'/HP] ' of 5.6 milliseconds
for copper and 2.2 milliseconds for aluminum. These
times diGer from values predicted from the previously
estimated Tt, and (bH)s by a factor of about two. The
value for copper is too large and that for aluminum is
too small. The reason for this discrepancy is not known.

We have not attempted to analyze the shape function
f(v ) in detail, but we can make a few general remarks

A considerable number of theoretical predictions con-
cerning f(v ) can be made using the methods of Van
Vleck" and Wright, "but the Hamiltonian K,„hasfewer
secular terms than the spin Hamiltonian BC' in the axed
coordinate system, and therefore the theoretical work of
Wright4' is not directly applicable here. As expected,
f(v,) has definite peaks at zero frequency and at yH, .
The significance, if any, of the small departures of the
resonant peaks from the value yHI is not known. These
departures may be due in part to experimental error.

In the limit of large H,„,f(v, ) is expected to be a
symmetrical curve centered about the resonance fre-
quency pHt, and the moments of f(v, ) in this case have
been calculated by Van Vleck. It is noteworthy that if
A. ;&=0 the secular part of X„[firstthree terms of Eq.
(20)]contains a spin interaction identical in form and ex-
actly half as large as the secular part of the Hamiltonian
in the fixed coordinate system. This implies that g(v),
the rf line shape, should be exactly similar and twice as
broad as f(v,). The expected shapes f(v,) g(2v) are
plotted in Figs. 12 and 13; here g(v) was obtained
experimentally. The observed f(v,) is considerably
narrower than the predicted shape, which may be due in
part to the fact that H~ is not very large and is in fact
comparable to the predicted line width. Another pos-
sible reason for the narrow observed f(v ) may be the
terms 3;sI,"Is, which are expected to produce exchange
narrowing of f(v,). It is rather surprising that they do
not also produce appreciable exchange narrowing of the
rf resonance line.

It is amusing to note that if 1 —3 cos'0=0 and Hi is
large, the line width should be zero, except for a small
spin-lattice relaxation broadening. In the case of the
data of Figs. 12 and 13 the modulation was not large
enough to induce such narrowing.

In conclusion we may say that besides providing an
accurate calibration of the rf field, rotary saturation is a
relatively simple way to study the properties of spin
systems in small magnetic fields. This statement is
based on the fact that the time dependent part of K,

„

really can be neglected to a very good approximation, so
that rotary saturation is really closely analogous to
ordinary saturation.

VI. CONCLUDING REMARKS

The theory and experiment in this paper demonstrate
the usefulness of the rotating coordinate representation
in resonance problems. The rotating coordinate repre-
sentation should be useful in treating other types of
relaxation and spin interaction than those considered
here. For example, the rotary saturation experiment
indicates that the perturbations responsible for trans-
verse (Ts or Ts,) relaxation of nuclei are those of
frequency pH&, rather than zero frequency.

All the theory in this paper can, of course, be applied
to paramagnetic resonance under suitable conditions. In
the case of ferromagnetic resonance the approximations
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made above are presumably invalid, but some progress
might be made along similar lines.

An as yet unexploited consequence of this work is the
feasibility of measuring spin temperatures and relaxa-
tion times and obtaining negative temperatures in
solids by the method of adiabatic fast passage. The
experimental technique would be similar to that em-
ployed by Drain4' and others4' to measure relaxation
times in liquids.

The implications of this research concerning the
interpretation of previous work are rather unimportant,
except for the probable errors in previous fast modula-
tion saturation measurements of T~, as discussed in
Sec. III. The optimum signal to noise ratio predicted by
Bloch and BPP is too small by a factor of about Ts/Tz,
provided the dispersion mode is observed under condi-
tions of slow passage. This gain is usually offset by the
additional apparatus noise at high rf power levels, and
by the fact that Tj is frequently so long that slow
passage is impractical.
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APPENDIX A

The method used to calculate the ratio of the effective
external energy M„B,„

to internal spin-spin effective
energy is similar to that used by Van Vleck" to calculate
the specific heat of a spin system. However, the form of
the Hamiltonian is slightly diferent and the calculation
is simplified by the use of the density matrix" formalism.

The assumption of a canonical distribution of states
with respect to the transformed spin Hamiltonian is
equivalent to the assumption that the state of the solid
is described by the density matrix (in the r-rotating
system)
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FIG. 13.Values of f(r ~) T~~L1+ (SfI)'/PP j ' for Cu" in annealed
copper. The values of H1, H, and modulation are the same as
those in Fig. 12. The arrow indicates the frequency off&/27r.

corresponding to the spin effective temperature T*.The
second term represents the assumption that the lattice
(electrons, lattice vibrations, etc.) is relatively un-
affected by the rf field and can be described by the
temperature T.

In practice we can assume that T* is large enough for
us to write

where
p (1 K,„/kT*)pz-,

pz, = C exp( —Kz/kT). (88)

The expectation value of K,„averaged over the
canonical ensemble is

((K,„))=TrK„p—(TrK„pz,—TrK,„spz/kT ). (89)

This expression is easily evaluated by using a
representation in which the operators I,, and 3'.l.
are diagonal. In this case we can write C '= (2I+ 1)~ Trz
Xexp( —Kz/kT) where E is the total number of spins
and Trr.O denotes the diagonal sum of the operator 0
over all the eigenvalues BJ. of BC~, keeping the quantum
numbers rzzz; (eigenvalues of I;,) fixed. In the same
representation we can write

p C exp( —K,„/kT*—Kz/kT). (86) TrK,„'pz——(Tr zK,„')(Trz pz), (90)
Here C is a normalizing factor making Trp= 1, T* is a
constant analogous to an effective spin temperature in
the rotating system, Kz, is the lattice (nonspin)
Hamiltonian, and T is the lattice temperature. TrO
denotes the trace (diagonal sum) of the operator O. The
spin-lattice interaction Kaz (or Kszn transformed to
the rotating coordinate system) is neglected since it is
assumed to be small. The first term of the exponential
(86) represents the assumption that the spin system is
in a canonical distribution of states with respect to 3C„,

4' L. E. Drain, Proc. Phys. Soc. (London) A26, 301 (1949).
44 Ciaroti, Cristiani, Giulotto, and Lanzi, Nuovo cilnento 12, 519

(1954).

where TrlK.,' denotes the diagonal sum of BC,„'over the
quantum numbers m~;, keeping the quantum number
b~ fixed. This relation follows directly from the
diagonality of 3'.,„with respect to the bL, and of Kz,
with respect to the nzz;.

Using the easily verified relations:

TrzI, .Is„=tsI(I+1) (2I+1)~6;,sb. ,„, (91)

TrlI~.I~~I gI ~

= (1/9)Is(I+1)'(2I+1)~h;, sh„,„6,„5f,„,(92)

where v, p, f, ri =@,y, s and jW rzz, kWzs, we can evaluate
Tr&,„'pI,and similarly show that TrX,„pI,is zero. The
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APPENDIX B

The equation of motion of ((X„))is

-((x.,))=((-ix„x.,)))+(( ")), (94)

where X„is the total Hamiltonian X=Xz+Xsz+Xs
transformed to the r-system:

XL+XSLB(t)+Re~ (95)

Since K„commutes with itself and Xr„(94)becomes

result is

—0T~((X.,))= —,'Ng' 8)'H,„'I(I+1)
+ (1/9)I'(I+1)'2 i) (3A Ji'+ 3Bg)') (93)

The first term of ((X,„))is the external energy —M„H,„,
as can be verified by directly calculating ((M„))
= ((gP g I,)) using (87). The second term is the internal
spin-spin effective energy. Equations (30) and (31)
follow directly from (93) on comparison with the Van
Vleck" expression for ((AH)')A„.

j, k and $, it, f not necessarily identical or nonidentical)
for p~ yields

Tr(BI;,)pz ——Io/Ti, (99)

( (o) I() Ng'P'I(I+1)
((~X.,&)

= Vgt i
H.—I—

&) T, 3kT*

( coy' 1 Hi2
x /Ho —-f —+&)T, T,.

+P(I+1)'Q —A P +
9Tg 9T2,

»(~Id )IJ pz= —3I(I+1)/T~ (100)

Tr(BI,,)I;,pz ——3iI(—I+1)/Ti, (101)

Tr(BI,,)I;,I),„2pi, =(—1/9) P (I+1)'/Ti, (102)

Tr (BI;„)I,„I),„'pz———(1/9)P (I+1)'/T2„(103)
where j/k; p=x, y, s; v=x, y. All other traces oc-
curring in (97) are zero. Using these expressions we get

—((K,„))= ((BX.,))—M, .
dt

er
(96)

B,),' 2A, ),B,)'1
(104)

l

The abbreviation 80 is used for ik '[X—sr, i),0$, so that
((80)) is the time rate of change of the canonical average
expectation value ((0)) of 0, due to the (time dependent)
spin-lattice interaction Xql, g. In the treatment of fast
or intermediate passage the first and last terms of (96)
are retained [Eq. (65), Sec. III(e)], while under steady-
state conditions they are by definition zero, and the
second term is therefore also zero. ((BX,„))is also
referred to in Sec. III as [8/Btjsi, ((X,„)).Assuming that
the spin-lattice interaction KgL, , and therefore the
transformed interaction 3C»„,is linear in the operators
I,

„ I;„,I,„weget

((Ne„))=gPg; Tr(BI;) H,„p
+g'O'Z;~), [A, ).' Tr(&I;) &) p

+B,),
' Tr(BI;,)I)„pj. (97)

In (97) p is understood to be given by (87).
To evaluate (97) we use the assumption (34), which

in slightly more general form can be written

M, p
——I(I+1)g'P'NH, „/3kT*. (105)

The static equilibrium magnetization Mp is given by the
same formula with M„~Asap, T*—+T, and H.„—+Hp.
Therefore (104) can be written

((Nc„))= —(M„—Mo, )[1+(8H)2/H, „')H).„/Tip, (106)

where

and

Mpp=

Mo, [1+(l)H)'/H, „']T
~1p

Mo COSO~

Mo cosO~(T ' cos'0'+T2 ' sin'0) '

T i[1+n(()H)'/H„'j

(107)

(108)

)16 2q
2,i ——0, n=

~
+ ~(T ' cos'0~+T ' sin'Q~) '

(9Ti 9Tg,g

((M„))=TrgP g; I, p is easily shown to be a vector in
the direction of H,„ork„ofmagnitude

Tr(BI;,)p'= TrI;.p'/T2„— (98a)

Tr (&I;„)p'= —TrI;„p'/T2„ (98b)

Tr(BI;,)p'= —(TrI;, p' Io)/Ti. (98c)—

If T2, Ti, and 2;), is no——t necessarily zero, Eqs. (38)
and (63) of Sec. III follow immediately.

In this calculation X&z, and 3C»„contain only the
time dependent part of the spin-lattice interaction
which is responsible for the relaxation, while Xq and X,„

contain time independent parts which result from the
spin-lattice interaction (i.e., chemical shift, Knight
shift, and electron coupled spin-spin interactions). ""
As discussed in Sec.,''III(c), this procedure is hard to
justify rigorously, but seems reasonable. physically.

Here we have temporarily abandoned the assumption
T~=T2„and p is a density matrix describing an
arbitrary state of the spin system. Thus p'= plpl. , where

p~ is an arbitrary function of the spin operators for
which Trrpr= (2I+1)~.Use of the various operators 1,
1+I;b 1+I;~I),„1+I,~I),„I),r (with $, )t, f'=x, y, z, and
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We assume that the system is described by the
density matrix

p=C exp(X„t/kT +/gPHpgp I,',+Xrf/kT), (109)

where 3C,„~contains all the time-independent terms of
X., LEq. (53)j except the last. The reason for including
all the spin-spin terms of X,„

is discussed in Sec. III(d).
The ratio of external unprimed spin energy to internal

spin-spin energy is obtained by evaluating ((X.,t)).
Proceeding as in Appendix A, (55) easily follows.

The equation of motion of ((X„&))is given by (96)
with the substitutions 3C,„—+BC,„&and the density matrix
(109) for that of (86) . Evaluation of the various terms is
similar to the procedure of Appendix B.Equations (99)
to (103) hold for the substitutions j—+j' and/or k-+k'
under suitable additional substitution of Ip', Tt', and
T„'.(48) and (56) then follow easily from the assump-
tion Ti= T2e and Tg'= T2,'.
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Theory of Electroluminescence

W. W. PIPER AND F. E. WILLIAMs
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The theoretical basis for exciting luminescence by the application of an electric potential to a crystalline
dielectric or semiconductor is considered. Three mechanisms of excitation are each shown to be theoretically
feasible in appropriate solids and with suitable local field conditions: (1) the ionization of impurity systems
directly by an electric field, (2) the acceleration of conduction electrons or positive holes in the valence
band to kinetic energies sufhcient to excite or ionize impurity systems or valence electrons by inelastic
collisions, and (3) injection of charge carriers. Radiative de-excitation is feasible by two mechanisms:

(a) direct recombination of conduction electrons snd holes in the valence band, and (b) optical transitions
characteristic of impurity systems known as activators. The characteristics of electroluminescence pro-
ceeding by these processes are examined theoretically.

INTRODUCTION

LECTROLUMINESCENCE of various crystalline
' ~ phosphors has been reported in the literature over

a period of twenty-five years. ' ~ Various mechanisms

have also been proposed. ' " ' In this paper the general
mechanisms for converting an electrical potential
applied to a crystal into luminescence will be examined
theoretically. Previously considered mechanisms are,
of course, included as well as others which may have
more significance as the number of types of electro-
luminescent crystals increases.

Electroluminescence is the excitation of luminescence
as a result of the existence of an applied potential dif-

ference in the phosphor material. The definition
includes luminescence induced by any mechanism of
injection of electrons or holes into the phosphor or any
mechanism of creating free charge carriers in the
phosphor if the energy of the emitted radiation origi-
nates in the electric potential diGerence applied to the
phosphor. Cathodoluminescence is excluded since in

' O. Lossev, Phil. Mag. 6, 1024 (1928).
~ G. Destriau, Phil. Mag. 38, 700 (1947).' Lehovec, Accardo, and Jamgochian, Phys. Rev. 83, 603 (1951).
4 Payne, Mager, and Jerome, Ilium. Eng. 45, 688 (1950).
~ W. W. Piper and F. E. Williams, Phys. Rev. 87, 151 (1952);

Brit. J. Appl. Phys. , Supplement No. 4, 6, 39 (1955).' D. Curie, J. phys. radium 13, 317 (1952)."J.F. Waymouth and F. Bitter, Phys. Rev. 95, 941 (1954).

this case the excitation energy is supplied initially to
electrons by an external field.

It is well known that solid-state luminescence usually
originates from excited impurity systems called acti-
vators which have dimensions of the order of an inter-
atomic distance. To radiate in the visible portion of the
spectrum, the activator system must have an excited
state at least 2 ev higher than the ground state. An
electroluminescent mechanism utilizing an activator
system must in some way localize 2 or 3 ev of the energy
available in the applied potential to the atomic dimen-
sions of the activator system and transfer this energy to
the activator. If the activator is left in an excited state,
it is then able to radiate a photon in returning to the
ground. state. Ionization of the center is also a permis-
sible mechanism, provided conduction electrons are
available or are made available subsequently.

The most straightforward mechanism of electro-
luminescent excitation is direct fieM ionization of the
activator system. Since the ionized state of the activator
system is at least 2 ev above the ground state, the field
strength necessary to ionize these centers at a reasonable
rate would normally be in excess of the dielectric break-
down strength of the crystalline matrix. Breakdown in
materials with suitable band gaps for luminescence
normally occurs by an avalanche mechanism, rather
than by field ionization of the valence electrons. Never-
theless, direct field ionization of the activator system






