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Signal-to-Noise Ratio and Signal-to-Noise Efficiency

iIn SMASH Imaging

Daniel K. Sodickson,* Mark A. Griswold,? Peter M. Jakob,2 Robert R. Edelman,?

and Warren J. Manning*?

A general theory of signal-to-noise ratio (SNR) in simultaneous
acquisition of spatial harmonics (SMASH) imaging is presented,
and the predictions of the theory are verified in imaging experi-
ments and in numerical simulations. In a SMASH image, mul-
tiple lines of k-space are generated simultaneously through
combinations of magnetic resonance signals in a radiofre-
quency coil array. Here, effects of noise correlations between
array elements as well as new correlations introduced by the
SMASH reconstruction procedure are assessed. SNR and SNR
efficiency in SMASH images are compared with results using
traditional array combination strategies. Under optimized condi-
tions, SMASH achieves the same average SNR efficiency as
ideal pixel-by-pixel array combinations, while allowing imaging
to proceed at otherwise unattainable speeds. The k-space
nature of SMASH reconstructions can lead to oscillatory spatial
variations in noise standard deviation, which can produce local
enhancements of SNR in particular regions. Magn Reson Med
41:1009-1022, 1999. © 1999 Wiley-Liss, Inc.
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Radiofrequency (RF) coil arrays are commonly used to
improve signal-to-noise ratio (SNR) in magnetic resonance
images. However, spatial information from RF coil arrays
may also be used to accelerate MR image acquisition by
shifting some of the burden of spatial encoding away from
the traditional imaging gradients. Since the initial develop-
ment of MR coil arrays, a number of rapid imaging tech-
niques have been proposed based on this principle (1-9).
Recently, using the simultaneous acquisition of spatial
harmonics (SMASH) technique (9), two- to fourfold im-
provements in imaging speed have been demonstrated in
vivo with commercial arrays, and up to eightfold accelera-
tions have been obtained in phantom images using special-
ized RF hardware (10,11). SMASH operates by substituting
linear combinations of component coil signals for time-
consuming phase-encoding gradient steps, effectively al-
lowing the acquisition of multiple lines of k-space in
parallel. This approach may be used to multiply the
intrinsic speed of MR imaging sequences without increas-
ing gradient switching rate or RF power deposition.

While the SNR properties of various reconstruction
algorithms in traditional gradient-encoded acquisitions
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with coil arrays have been studied in detail (12,13), no
similarly detailed studies have documented the effects on
image SNR of accelerated parallel data acquisition in
arrays. Carlson and Minemura (8) predicted an approxi-
mate \E decrease in SNR for a twofold increase in imaging
speed using two nested volume coils, and they also pre-
dicted spatial variations in SNR across the image plane, but
no explicit SNR measurements were reported. In the
proposal by Ra and Rim (5) for an alternative image-
domain “subencoding” approach using surface coils, SNR
was not discussed. Kwiat et al (6,7) presented general SNR
considerations for a proposed many-coil massively parallel
imaging apparatus. These general considerations, however,
do not indicate what SNR is to be expected for a partially
parallel imaging technique such as SMASH.

In this report, a detailed description of SNR in SMASH
imaging is presented. Analytic expressions for the propaga-
tion of signal and noise terms in a SMASH reconstruction
are derived. These expressions are used to explore the
effects of noise correlations on image SNR, the dependence
of SNR upon reconstruction parameters, and the scaling of
SNR with acquisition speed. SNR and SNR efficiency in
SMASH are also compared with theoretical predictions for
conventional gradient-encoded acquisitions and image re-
constructions using RF coil arrays (12,13).

These theoretical results are then verified in phantom
imaging experiments and in numerical simulations. For
realistic coil array designs, SMASH images and reference
images are compared to assess the spatial distribution and
acquisition-speed dependence of SNR. Noise variance mea-
surements for in vivo images are also compared both with
theoretical predictions and with the results of simulations.

Finally, after a review of the principal determinants of
SNR in SMASH images, implications for the design and
use of RF coil arrays in ultrafast partially parallel imaging
applications are discussed.

THEORY
SMASH Imaging: A Summary

The SMASH procedure is summarized in Fig. 1. The
left-hand side of the figure shows k-space schematics for
the various stages of data collection and reconstruction,
and the right-hand side shows Fourier-transformed image
data from a water phantom at each of the corresponding
stages.

First, MR signal data are acquired simultaneously in the
component coils of an RF coil array. A fraction 1/M of the
usual number of phase encoding gradient steps are ap-

1009



1010

Coil #1 Coil #2

Coil #3

Harmonic #0

Sodickson et al.

Coil #1 Coil #2 Coil #3

Harmonic #1

FIG. 1. Schematic representation of the SMASH imaging procedure (k-space cartoon on the left, corresponding phantom images on the
right). a: Simultaneous acquisition of data with a reduced number of phase-encoding gradient steps in multiple component coils of an array. b:
Formation of shifted data sets using spatial harmonic combinations of component coil signals. c: Interleaving of shifted data sets to generate a
full signal matrix, corresponding to an image with full FOV in a reduced total acquisition time.

plied, with M times the usual spacing in k-space (M = 2 for
this schematic example). The component coil signals ac-
quired in this way correspond to images with a fraction
1/M of the desired field of view (FOV) (Fig. 1a). With M
times fewer phase-encoding steps, only a fraction 1/M of
the time usually required for this FOV is spent on data
collection.

Next, a total of M linear combinations of the component
coil signals are formed, to produce M shifted composite
signal data sets (Fig. 1b). The linear combinations are
designed to produce sinusoidal modulations of total RF
sensitivity across the image plane. These modulations, or
“spatial harmonics,” mimic the modulations produced by
phase-encoding gradients and may be shown to produce an
identical k-space shift (cf. Ref. 9 and Eq. [4] below). Two
such spatial harmonic modulations are illustrated schemati-
cally in Fig. 1, for a total time savings factor of M = 2 in this
example. The maximum achievable time savings factor
depends on the total number of spatial harmonics that may
reliably be synthesized through linear combination, and
this number in turn scales up with the number of array
elements. Identification of the appropriate linear combina-
tions for spatial harmonic generation requires independent
measurement or estimation of the sensitivity profiles of
each component coil in the array. Several strategies for
sensitivity calibration have been described (9,14,15). Fol-

lowing calibration, optimal weighting factors for the com-
ponent coils may be derived from a simple numerical
optimization procedure.

After linear combinations have yielded the shifted data
sets, these composite signals are interleaved to yield a full
k-space matrix appropriate to the full desired FOV. Finally,
this matrix is Fourier transformed to give the reconstructed
image (Fig. 1c). Since the need for multiple phase-
encoding gradient steps generally constitutes the temporal
bottleneck in MR acquisitions, the SMASH procedure
reduces image acquisition times by an amount propor-
tional to the number of phase-encoding gradient steps
omitted, namely, by an integer factor of M. Further details
about practical implementations may be found in Ref. 9.

The success of a SMASH reconstruction relies upon the
existence of correlations between signals in different com-
ponent coils of an RF coil array. These signal correlations
arise from spatial variations in coil sensitivity. The signal
from each array element may be written as

Si(ky k) = J [ dx dy p(x, )Ci(x, ) exp (—ikx — ikyy) [1]

where p(X,y) represents the spin density in a two-
dimensional image plane labeled by Cartesian coordinates
x and y, and C,(x, y) represents the spatial distribution of
RF sensitivity for the It component coil in the array. k, and
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k, are k-space coordinates corresponding to evolution in
frequency-encoding (G,) and phase-encoding (G,) gradi-
ents, respectively. Here, a two-dimensional imaging experi-
ment has been assumed, and this assumption will be
maintained for the purposes of notational simplicity in the
sections that follow. The generalization to three-dimen-
sional imaging is straightforward, however, and three-
dimensional imaging sequences have been successfully
combined with SMASH in practice.

SMASH relies on the fact that, for a suitable array, the
component coil sensitivity functions may be combined
with complex weights {nfm)} to approximate various spatial
harmonic profiles of order m. The m = 0 harmonic
represents the composite sensitivity formed by some refer-
ence linear combination with weights [n(®), i.e.,

CO(x,y) = >, nOc,(x, y). 2]
|

For the simple case of a linear coil array with elements
disposed, for example, along the y direction, it is straight-
forward to show that higher order harmonics may also be
approximated by appropriate weighted sums:

C(x, y) = 2 nMC,(x, y) = COx, y) exp (~imAky). [3]
|

Here, Ak, = 2w/FOV, and m is an integer that may be
positive or negative depending on the direction of k-space
shift that is desired. Using Egs. [1] to [3], we may derive a
simple expression for weighted combinations of compo-
nent coil signals:

0"l k) = [ [ ey o) X nimciex )
- exp (—ikx — ikyy)

= [ dxdy p(x, y)cO(x, y)

- exp (—ikx — ik, + mAk,)y)
= J | axay o) ZnPcix,y)

- exp (—ikx —i(k, + mAk,)y)

~ > nOs,(k,, k, + mAk,) [4]
I

This is the basic relation underlying SMASH imaging. It
illustrates that linear combinations of component coil
signals may in fact be used to produce k-space shifts
analogous to those produced by magnetic field gradients. It
also indicates that, when imaging is performed in a suit-
ably configured RF coil array, the set of MR signal data at
one k-space position is linearly related to the signal data at
adjacent k-space positions. This is a departure from the
usual state of affairs for single-coil imaging, in which such
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interdependencies between different k-space signals are
precluded by the orthogonality of the Fourier basis. An
accurate description of SNR in SMASH must also account
for any noise correlations that may accompany these
k-space signal correlations.

SNR in SMASH: Signal Correlations and Noise Correlations

In this section, we explore the effects of noise correlations,
including both preexisting correlations resulting from the
sample and array geometry and new correlations intro-
duced by the reconstruction procedure. We have previ-
ously reported (9) that when the weights [n(™} used for
linear combination of component coil signals form orthogo-
nal sets for different spatial harmonics m, no new noise
correlations are introduced by the SMASH reconstruction,
even though a reduced number of measured data points are
being used to generate the final composite image. To lend
mathematical rigor to these general arguments, and to
study the impact of component coil weighting on SNR, we
assess how signal and noise terms propagate through the
various stages of the SMASH reconstruction procedure. In
the derivation to follow, we will use a discrete index rather
than a continuous variable to specify the k-space signal. In
other words, the notation S(ky, ky) from Egs. [1] to [4] above
will be replaced by the simpler expression S,.

The image intensity I; at any pixel j in an MR image may
be written as a linear combination of N measured signal
points Sy:

N-1

= W;, S, 5
j Nk=0 jk2k []

For standard phase warp imaging, Wy, is an appropriate
coefficient from the inverse Fourier transform, i.e.,

T) : [6]

To avoid undue complexity in the equations, only one
pixel index j has been used here, and the linear combina-
tion in Eq. [5] describes a one-dimensional inverse discrete
Fourier transform (DFT). The generalization to multiple
dimensions is straightforward, since the non-array-en-
coded direction has the standard behavior and may be
treated with a separate inverse DFT.

When a coil array is used for image acquisition, multiple
signal points S, are acquired simultaneously in each
measurement step, one data point for each component
coil I. These component coil signals transform into mul-
tiple component coil images l;;, where | varies from 1 to L,
with L representing the total number of array elements.

In a SMASH image reconstruction, linear combinations
of component coil signals are used to generate composite
signals that are shifted in k-space. Suppose that, as is
illustrated in Fig. 1, all but a fraction 1/M of the required
k-space positions have been omitted from the acquisition,
to yield component coil images with 1/M of the desired
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FOV. In this case, the k-space index will take values of k =
0, M, 2M, ..., N, and a total of M linear combinations will
be required to fill in the missing data at k-space positions

k+m,wherem=12,...,M—1:
Sprmt = E nMS,. [7]

To obtain the SMASH-reconstructed full-FOV image, we
take the inverse DFT of the composite signal set (including
the unshifted m = 0 composite), i.e.,

ISMASH

L B
N ; mE:o WgimSitm

<

1 1

L
= E Wj,k+mnfm)sk|- [8]

k m=0 I=1

Z

The SNR of the SMASH-reconstructed image pixel in Eq.
[8] may be expressed in terms of its real and imaginary
parts,

e|§MASH>
SNR(RelPMA%") =
(]'ReISMASH
<| ml.SMASH>
SNR(ImISVASH) = ———— [9]
O |mSMASH
J

where the brackets indicate a mean value and o represents
the standard deviation over an ensemble of images sampled
from the same noise distribution. The numerators in this
expression are simply the mean of the real or imaginary
parts of Eq. [8], namely,

Re
ISMASH

Im)’

1
:@%2

(W, ermn™ sk.)> [10]

The denominators in Eqg. [9] take a somewhat more
complicated form. They may be calculated by taking the
variance of real or imaginary components of Eq. [8],

Re 2 Re
o2 _ [SMASH| | _
Re |m]|JSMASH iml’ Im

and collecting all nonvanishing cross-terms between differ-
ent component coils | and spatial harmonics m. These
cross-terms are evaluated assuming that the distribution of
noise in the measured signal points Sy, is Gaussian, with
zero mean and variance o2. Noise voltages for different
k-space sample points are assumed independent, since
noise is not spatially encoded and is independent of
position in the image. Correlation of noise voltages be-
tween different array elements is expressed in the usual
way by a symmetric noise correlation matrix R whose
elements R, express the net noise coupling between

2
IjSMASH> [11]

Sodickson et al.

component coils | and I, whether from residual mutual
inductance not eliminated by array design, or from shared
flux of transient current paths in a conductive sample (cf.
Refs. 12 and 13). The relevant cross-terms may be ex-
pressed as follows:

(ReS ReSy) — (ReSyReSy)

= (IMSIMS,y) — (IMS,MIMSyy) = dRyo?  [12]
[ReSImS,;) — (ReS,IMS,;)

= (ImSReSy,) — (IMS,{ReS,,) = 0. [13]

Substitution of Egs. [12] and [13] into an expanded expres-
sion for Eq. [11] yields the following result for noise
variance in a SMASH reconstruction:

2 2
O-ReljSMASH —_ O-l IJSMASH - 2 E
m * ’
Y/ > n{MR,,N*m)|.
| I

[14]

The sums over | and I’ in Eq. [14] express the effects of
preexisting noise correlations between array elements prior
to SMASH reconstruction, as described by the elements Ry
of the noise resistance matrix. The sums over m and m’, on
the other hand, describe new noise correlations arising
from the reconstruction procedure, as a consequence of the
fact that different linear combinations of the same acquired
data sets have been used to generate different lines of
k-space.

Combining Eq. [14] with Egs. [10] and [9] gives the SNR
for a SMASH reconstruction:

SNR(IjSMASH)

EEE Jk+mn Skl>

= . [15]

1 12
N*¥2o | = 22 Re |Wjm-m 22 nfm)Ru'nT(m’)))
M m m’ ' I

SNR in Fully Gradient-Encoded Acquisitions
Simple Linear Combinations

For reference, suppose that a full data set S[i" is acquired in
the same coil array using the same underlying imaging
sequence as in the SMASH acquisition. Now k takes its full
set of N values, k =0, 1,2,...,N — 1. Since M times as
many phase-encoding gradient steps are now required, the
total acquisition time will be M times as long as for the
SMASH image. In the interest of making as direct a
comparison as possible, we first use a simple linear
combination of component coil signals to form the compos-
ite reference image 17"

N-1
Isimple —

N =0

N-1

L
E n(o)SfuII. [16]
k=0 I=1

kSfull

Z|H
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Here, n{ are the same weights as were used for the m = 0
combination in the SMASH reconstruction. A simplified
derivation analogous to the one outlined in the previous
section yields the following expressions for noise variance
and SNR:

S hOR, N3O

o 17
N < < [17]

2
g, simple =

slm le =
Rel, P

and

2 2 n(O)Sfull

ko1

172
2 EI: nOR,n3©®

SNR(I1mP') = [18]

N 1/20.

Optimal Pixel-by-Pixel Phased Array Image Combinations

The simple reference combination, while a convenient
benchmark for SMASH SNR, does not represent the best
available image combination algorithm from the point
of view of SNR. Roemer et al (12) showed that the op-
timal SNR for a coil array may be achieved on a
pixel-by-pixel basis by using appropriate linear combina-
tions of corresponding pixels in each of the com-
ponent coils. In particular, Roemer et al derived optimal
sets of weights [n;] for pixel-by-pixel combinations of the
form

pixel-by-pixel full
l ny ) WSy

| k

[19]

Z| -

L
_ full _
= 2 =
I=1
For such a combination, the general expression for SNR is

2 J| z Wksfull
EI: Z nj|R||rnﬁr

SNR(ijixel-by-pixel) — [20]

N 1/20.

The best solution for complex data combination was
shown to involve the noise resistance matrix and the
complex conjugate of the coil sensitivity functions:

optlmal _ )\ E (R)ch* [21]

Here, \; is a free scaling factor that can vary with each pixel
without affecting SNR. Ref. 12 also explores a variety of
alternative weighting options that may be used in place of
the optimal weights of Eq. [21]. The sum of squares
combination procedure, which is now widely used for
image combination in the absence of detailed sensitivity
information, is not, strictly speaking, a linear technique in
the sense of Eq. [19]. For linear array designs of the sort
described in Ref. 12, however, it has been shown to
approximate an optimal linear weighting based on RF
sensitivities.
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Comparison of SNR in SMASH Versus Fully
Gradient-Encoded Acquisitions

Comparison With Simple Linear Combinations:
Orthonormality Conditions

How does SMASH SNR (Eqg. [15]) compare with the SNR of
the simple linear combination (Eq. [18])? Let us consider
what happens when the following condition is met:

Z 2 nfm)R“,nT(m') — Bm o Z Z nfm)R“,nT’(m)

[22]

Subject to this constraint, the m’ sum in Eq. [14] vanishes,
and, using Wj, = 1, the noise variance becomes

2 = 2 _ (m) *(m)
O'RteSMASH o, ISMASH 2 2 E n "Ry Ny [23]

(Due to the symmetry of Ry, the sum 3 3 n™Rynt™ is

purely real, and the Re operator may be omitted.) This
expression has a familiar form, similar to that derived in
Refs. 12 or 13 for the noise variance of traditional array
combinations. The final noise variance in either case is just
a square-weighted sum of the variances o2 of individual
signal points, with mixing dictated by the off-diagonal
elements of the noise resistance matrix. The effects of
preexisting noise correlations remain in the R term, but
no additional noise correlations are introduced by the
reconstruction procedure. Comparison of Eq. [23] with Eq.
[17] shows that the noise variances oéeIJSMASH and oée,jsimple

are identical whenever

1
M 2 EI: Z nfm)R“rnT(m) = EI: Z nfO)R“rnT,(O). [24]
m

Ideally, the numerator of the SNR will be the same for the
simple reference and the SMASH images, since for a
perfect SMASH reconstruction, the composite k-space
matrix is identical to the reference matrix of the simple
linear combination:

_ 0)full
ZI nMs = E nOSel,, =

SSMASH

simple
k+m S

k+m * [25]
In other words, the sum over k and m in the SMASH case

reduces identically to a sum over the full range of k in the
simple reference image, and

-1 L

I_simple N

=
Thus, if the SMASH weights allow for an accurate

reconstruction and obey both Egs. [22] and [24], then both

signal and noise terms will be equivalent to their counter-
parts in the simple reference image, and SNR(I?V*") =

[

O cfull
Wi 7Sy >

M-1

Z||—\

e

L
> W mn(™ sk.> (ISMASH) - 26]

m=0 I=1
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SNR(I"™P*), despite the reduced acquisition time of the
SMASH image.

What is the meaning of the conditions in Eqgs. [22] and
[24]? For simplicity, we use a vector notation, expressing
the weights {nfm)} as elements of L-component complex
vectors n(M). The noise resistance matrix R is a symmetric
L X L matrix that operates on these vectors. In this notation,
Eq. [15] becomes

SNR(IjSMASH)

; 2 <Wj,k+mn(m)f - Sy
m
= 1 v [27]
NYee | > > Re (W, pyn™) - RNM)
m m’

(where the T symbol denotes the Hermitian conjugate, or
the conjugate transpose). Similarly, Eqgs. [22] and [24]
become

nMmT. RnM) =3§_ .nMT. RnMm [28]

1
— >\ nmt . RpM™ = nOf . R©), [29]
M5

We may define new effective weight vectors A(™ using the
following transformation:

AMm = (RY2)n(m [30]
which also yields the conjugate relation
AMt = n(m)T(RUZ)T — n(m)T(R1/2). [31]

(Here we have used the fact that since R is symmetric, RY/?
is also symmetric, i.e., RY2 = (RY2)T).

In this new basis, NMT . Rn(M) — AMT . 3(M) and Eq. [28]
takes a simple form:

AmT. AMm) =5 A2, [32]

This is an orthogonality relation for the weights used to
generate different harmonics m and m’. Equation [23]
describes the noise variance of the SMASH-recon-
structed image for the idealized case in which an or-
thogonal set of effective weights has been used for the
reconstruction and embodies the principle with
which we began our investigations, namely, that orthogo-
nal linear combinations introduce no new noise correla-
tions.

Similarly, in the new basis, Eq. [29] becomes

1
2 A2 = [AO2 [33]
m

This constitutes a normalization condition for the weight
sets [fi™)]. For the noise variance of the SMASH image to be
equal to the variance of the simple reference image, the
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various SMASH weight sets must on average have the same
norm as R©,

In summary, a SMASH image, obtained in a fraction 1/M
of the total acquisition time, will have the same SNR as a
comparable full-time reference image formed by simple
linear combination, subject to the orthogonality and normal-
ization conditions

Z IE n{™R,, n}™

= S > 2, N™R,n*™ (orthogonality) [34]
I I’

SPMEERE

2|

= >, > nOR,:n*® (normalization). [35]
| I

Whether the SMASH weights approach orthonormality
in practice depends on the constraints of spatial harmonic
fitting for any particular image plane and coil array geom-
etry. Sample weights are given in a section on experimental
results to follow. The simplifying conditions of orthonor-
mality are by no means a requirement for useful SMASH
imaging, but they do serve as a design goal for practical
array design, and as a helpful conceptual tool for under-
standing and predicting SNR behavior. For example, depar-
tures from orthonormality will have a number of predict-
able consequences for SNR.

Orthogonality: By virtue of the presence of DFT coeffi-
cients Wj v, the expression Eq. [14] for noise variance
contains both constant terms (with m = m’) and oscillating
terms (with m # m’). The oscillatory terms, which, like
W m-m~, have zero mean, characterize spatial variations in
the value of noise variance across the image. These spatial
variations are the result of noise correlations between
different k-space lines in the reconstructed signal matrix
and are present whenever the orthogonality condition Eq.
[34] is violated. In such cases, the operation of the DFT on
the partially correlated signal data can lead not only to
noise correlations, but also to noise anticorrelations in
certain areas of the image, resulting in local reductions of
noise variance. In the M = 2 case, all adjacent k-space lines
are similarly correlated, resulting in a sinusoidal first-
harmonic oscillation of noise variance about its mean
value. At higher values of the acceleration factor M,
contributions from higher harmonics enter into the noise
variance profile, with the relative magnitude of each
contribution determined by the degree to which the corre-
sponding effective weights depart from orthogonality. Thus,
orthogonality of the weights controls the spatial distribu-
tion of noise in a SMASH image.

Normalization: The value of the constant terms withm =
m’ in Eq. [14] is determined by the norm of the correspond-
ing effective weights. Thus, normalization of the weights
controls the baseline about which noise oscillations occur.
If weights for higher harmonics have larger norms than the
reference zeroth-harmonic weights, i.e., if 1/M 3, |i(M|2 >
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|A©|2, then baseline SNR will decrease due to an increase
in noise variance out of proportion to signal amplitude. On
the other hand, if weights for higher harmonics have
smaller norm than the reference weights i@, average SNR
will actually be improved in the SMASH image compared
with the reference image formed by simple linear combina-
tion.

Comparison With Optimal Pixel-by-Pixel Combinations

The comparison of SMASH SNR with the SNR of optimal
pixel-by-pixel combinations is somewhat less straightfor-
ward, since the magnitude of SNR gains from pixel-by-
pixel techniques depends on the particular structure of
component coil sensitivities, which in turn depends on
array geometry and image plane orientation. In general, no
single closed form comparison exists independent of a
particular geometry. Nevertheless, the principal effects of
pixel-by-pixel weighting may be estimated using approxi-
mate models. The optimal pixel-by-pixel weights have
been shown to be proportional to the complex conjugate of
the coil sensitivity functions, Cji (cf. Ref. 12 and Eq. [21]).
Such a weighting maintains a maximum additive signal in
regions of significant signal amplitude, while discarding,
to the greatest extent possible, regions dominated by noise.
In other words, the optimal pixel-by-pixel weighting consti-
tutes a form of matched filtering. For linear coil arrays, this
pixel-by-pixel noise-filtering effect tends to give SNR gains
on the order of \[ compared with simple sums of compo-
nent coil images (where L once again represents the
number of array elements). These arguments indicate that,
for the linear arrays used in this work, optimal pixel-by-
pixel techniques will yield a factor of approximately \L
better SNR than SMASH reconstructions with well-
normalized weights. Departures from the normalization
condition will affect the comparison by shifting the SMASH
noise baseline up or down, as was outlined in the previous
section. The spatial distribution of SNR in the pixel-by-
pixel reconstructions will be determined by the structure
of the coil sensitivity functions, whereas in SMASH images
the spatial distribution will also be affected by the orthogo-
nality of the weights. The results of detailed SNR compari-
sons for particular array designs will be presented in
sections to follow.

Comparison of SNR Efficiency in SMASH Versus Fully
Gradient-Encoded Acquisitions

One particularly noteworthy feature of the expression for
SMASH SNR (Eqg. [15]) is that, when the orthonormality
conditions are met, SNR is independent of the acceleration
factor M. In this situation, whether the image is acquired at
2 times or at 10 times the standard sequential imaging
speed, the SNR of the SMASH-reconstructed image is the
same. A comparison of how SNR scales with acquisition
time in partially parallel as opposed to fully gradient-
encoded sequential acquisitions is therefore in order.

In traditional sequential imaging, SNR is proportional to
the square root of the acquisition time and thus decreases
with the square root of imaging speed. This proportionality
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has been shown to arise from the integration over acquisi-
tion time that effectively takes place during Fourier trans-
formation of the MR signal in the course of image genera-
tion (16). Inherent in the proportionality, however, is an
assumption that total acquisition time scales linearly with
matrix size N for any given imaging sequence, since in
sequential MRI, each additional line of data requires an
additional gradient-encoding step. This assumption no
longer holds true in a partially parallel acquisition such as
SMASH, for which distinct lines of data are sampled
simultaneously, rather than one after the other. To the
extent that the various gradient-encoded and coil-encoded
lines remain independent of one another, SNR is propor-
tional to the total number of data lines, by virtue of the DFT
operation. The conditions for independence of gradient-
encoded and coil-encoded lines are just the orthonormality
conditions Egs. [34] and [35]. Thus, for a fixed final matrix
size, SNR in a SMASH reconstruction with orthonormal
weights is independent of the total encoding time. Depar-
tures from orthogonality change the spatial distribution of
SNR but do not affect its mean value across the image,
which does not decrease with increasing imaging speed
unless the normalization of the weights is degraded. By
contrast, for purely sequential techniques, an M-fold in-
crease in acquisition speed that preserved matrix size and
resolution would either be impossible or else, if possible,
would generally be accompanied by a factor of \W reduc-
tion in SNR.

Figure 2a contains an idealized plot of expected SNR as a
function of acquisition speed for SMASH reconstructions
of reduced data sets compared with simple linear combina-
tions or optimal pixel-by-pixel combinations of full data
sets in the same coil array. The array in this example is
comprised of four component coils with a linear geometry,
and the SNR of pixel-by-pixel combinations is assumed to
be dominated by the noise-filtering effect. Under these
conditions, optimal pixel-by-pixel combinations will have
twice the SNR of simple linear combinations. SNR for both
of these reference combinations falls in proportion to the
square root of acquisition speed. The SMASH reconstruc-
tions, on the other hand, begin at the lower SNR of the
simple combination, but maintain this value as acquisition
speed is increased by integer factors, as long as orthogonal-
ity and normalization conditions continue to be met. (Once
again, for any set of well-normalized weights, the mean
SNR across the image is preserved as acquisition speed
increases, regardless of whether or not the weights are
orthogonal.) At the maximum achievable acceleration fac-
tor, the SMASH curve intersects the curve for an ideal
matched filter combination.

Figure 2b shows the same results expressed in terms of
SNR efficiency, defined here as SNR per square root
acquisition time. Once again, the SMASH curve crosses
from the lower baseline of the simple combination to meet
the matched filter combination at the maximum accelera-
tion factor. This means that, in the same time as would
normally be required for a full acquisition, one could
acquire multiple SMASH images, average them together,
and obtain the same net SNR as would have been obtained
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FIG. 2. Idealized plots of expected SNR (a) and SNR efficiency (i.e.,
SNR per unit square root acquisition time; b) as a function of
acquisition speed for SMASH reconstructions of reduced data sets
compared with simple linear combinations or optimal pixel-by-pixel
combinations of full data sets. The same four-element array is
assumed in all cases, and orthonormal weights are assumed for the
SMASH reconstructions. The acquisition speed indicated in the
figure as 1 unitis assumed to be the maximum speed that may safely
be achieved using sequential imaging techniques, so that speeds in
the grayed region are attainable only with partially parallel acquisitions.

for an optimal matched filtered image generated from the
full data set.

One of the most promising applications of SMASH, and
of parallel imaging in general, will be to allow increases in
speed even when physical and physiologic constraints
would otherwise prevent further gains. If unit acquisition
speed in Fig. 2 is taken to lie at the sequential speed limit
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(as given by peak gradient performance or by the neuromus-
cular stimulation threshold, for example), then the gray-
shaded areas in the figure represent a range of speeds that
may only be achieved using a partially parallel acquisition
strategy. The dotted continuations of the simple sum or the
pixel-by-pixel SNR curves then represent theoretically
predicted but practically unattainable behavior. An opti-
mal SMASH reconstruction has the same SNR as the
optimal pixel-by-pixel reconstruction would have if the
latter could be operated at higher speed.

METHODS
Phantom Imaging Experiments

To verify theoretical predictions, and to explore the behav-
ior of SNR under realistic imaging conditions, a resolution
phantom was imaged using a custom-built four-element
linear array on a Siemens Vision 1.5 T whole-body clinical
MR imager (Siemens Medical Systems, Erlangen, Ger-
many). The array, which consisted of four 78 X 230 mm
rectangular elements overlapped along their short axis for a
total array extent of 260 X 230 mm, was initially developed
for accelerated SMASH imaging of the heart and of the
brain (17). For the current studies, the array was oriented in
a coronal plane, with the elements disposed along the
foot-head B, field direction. The image plane was also
coronal, and located approximately 40 mm from the array,
with a foot-head phase-encoding direction. A fast low-
angle shot (FLASH) imaging sequence was used, with TR
of 12 msec, TE 6 msec, matrix size 128 X 128, FOV 300 X
300 mm, flip angle 7°, and slice thickness 4 mm. The flip
angle and slice thickness were chosen for a target mean
reference SNR in the range of 30—40. In this SNR range, the
effects of system instabilities (on the order of 1% variation
from acquisition to acquisition for our commercial imaging
system) lie below the noise level and do not significantly
complicate SNR measurements.

After the phantom had been left in place to stabilize for
15 min, 56 separate acquisitions were performed, of which
the last 48 were used as a measurement ensemble. (The
first eight acquisitions were discarded to avoid any non-
steady-state effects such as mechanical vibrations in the
fluid compartments of the phantom.) Identical reconstruc-
tions for reference and for SMASH images were then
performed on each of the 48 data sets. Reference image
reconstructions were applied to the full acquired data sets,
using either a simple sum of component coil signals or a
traditional sum of squares combination algorithm (in which
component coil images are combined pixel-by-pixel as the
square root of the sum of square magnitudes). SMASH
reconstructions were performed on reduced data sets,
representing accelerated acquisitions with reduced phase
encoding. The weights {nfm)} for spatial harmonic genera-
tion were calculated with a matrix least squares algorithm,
using representative signal profiles along the phantom
diameter as internal sensitivity references (cf. Ref. 9). Unit
weights (n{” = 1) were used both for the simple linear
combination reference and for the zeroth spatial harmonic
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FIG. 3. Spatial distribution of signal intensity, noise standard deviation, and SNR for reference and double-speed SMASH images of a resolu-
tion phantom using the four-element array. Open circles, experimental data; solid lines, theoretical predictions. Signal, noise, and SNR profiles were
taken along dashed lines in the reconstructed images shown at the top. Image acquisition and reconstruction parameters are reported in the text.
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in SMASH reconstructions. (Such a choice, as opposed to a
combination that produces homogeneous signal intensity,
for example, is allowed in SMASH reconstructions so long
as all higher harmonics are multiplied by the *zeroth
harmonic” profile; cf. Egs. [2] and [3]).

SNR values were then calculated on a pixel-by-pixel
basis by taking the mean of each pixel intensity over the
ensemble of reconstructed images and dividing by the
standard deviation over the same ensemble. Measured SNR
values were compared with theoretical predictions based
on the observed signal distributions, the calculated SMASH
weights, and the measured noise correlation matrix.

In Vivo Measurements

A combination of numerical simulations and empirical
measurements was used to assess the spatial variation of
noise in an in vivo imaging situation. MR signal data,
image data, and reconstruction parameters from a previous
study (9) were used for this analysis. The MR signal data
were obtained in a healthy adult volunteer, using the
commercial Siemens CP spine array with four active
elements on our Siemens Vision 1.5 T system. A centric-
reordered single-shot RARE sequence was used, and the
FOV was chosen to cover the abdomen and thorax of the
volunteer. Further details on imaging parameters are avail-
able in Ref. 9. The original image data included a) a
reference image acquired in 540 msec and reconstructed
using a sum of squares algorithm; and b) a SMASH image
acquired in 270 msec with half the number of phase-
encoding gradient steps and reconstructed using the
SMASH procedure with M = 2.

For the simulations, 16 correlated noise sets were added
to the original in vivo MR signal data sets, to simulate an
ensemble of repeated experimental measurements. Noise
was generated by calls to a Gaussian random number
generator (the function randn in Matlab Version 5.0 (The
Mathworks, Natick, MA)), with values of the variance
selected to match empirically estimated SNRs in the source
images. Correlation of noise between component coils was
simulated by multiplying component coil noise sets by a
noise correlation matrix R derived from experimental
measurements in the appropriately loaded array. After the
correlated noise replicas had been added to the source
signal sets, an ensemble of reconstructed images was
generated using the sum of squares or the SMASH recon-
struction algorithms. Pixel-by-pixel calculations of noise
standard deviation in this ensemble were compared with
theoretical predictions based on the SMASH weights (the
same weights used in the original imaging study) and on
the measured noise correlation matrix.

For comparison with both theory and simulations, noise
standard deviation as a function of position was also
measured directly in the original reference and SMASH
images. A small rectangular region of interest (ROI) was
initially placed in the corner of the in vivo images, and the
standard deviation of image intensities within this region
was calculated for various ROI positions along the edge of
the images in the phase encoding direction. Since each
calculation was performed in an ostensibly signal-free
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region, each constituted an approximate measure of noise
standard deviation in that region, and the set of these
measurements taken together constituted an estimate of the
spatially dependent noise profile.

RESULTS
Phantom Imaging Experiments

Figures 3 and 4 compare experimental results (open circles)
with theoretical predictions (solid lines) for SNR as a
function of position in phantom images using the four-
element array.

Figure 3 plots pixel-by-pixel signal intensity, noise stan-
dard deviation, and SNR profiles for sum of squares,
simple sum, and SMASH images. Profiles were taken along
a diameter of the phantom indicated by dashed lines in the
images shown at the top. In signal profile, the double-
speed SMASH image is a faithful replica of the full-time
simple sum reference profile. Noise profiles are essentially
flat for the two reference reconstruction techniques, while
the standard deviation profile shows a marked oscillation
for the SMASH reconstruction. This oscillation, which
closely matches the predicted profile, results from nonor-
thogonalities of the effective weights used for SMASH
reconstruction. Close inspection of the figure shows that
the oscillation in noise background corresponds to a
relative enhancement of SNR at the edges of the SMASH
SNR profile compared with the simple sum SNR profile.

Figure 4 plots noise standard deviation profiles as a
function of SMASH acceleration factor M from M = 2 to
M = 4. The effects of higher harmonic contributions to the
oscillatory noise profile are particularly evident at M = 4.
In the SMASH images shown at the right of Fig. 4, slight
residual aliasing artifacts may be seen at the higher SMASH
factors, as has been described in more detail in Ref. 9. The
noise profiles, however, are unaffected by these residual arti-
facts.

Figure 5 shows the scaling of SNR with imaging speed
for phantom images with the four-element array. Mean
SNR values were calculated from the reference and SMASH
data sets by averaging the pixel-by-pixel SNR over the
circular region spanned by the phantom. Mean SNR for the
sum of squares combination was 33.3, and is represented
in the figure as an open triangle. The simple sum combina-
tion (open square) had a mean SNR of 14.8, approximately
a factor of 2 lower than for the sum of squares. As in the
schematic graph of Fig. 2, dotted lines have been drawn to
indicate the theoretically predicted but practically unattain-
able square-root scaling of these SNR values for higher
sequential acquisition speeds. Mean SNR measurements
for SMASH reconstructions with acceleration factors of 2
to 4 are represented as open diamonds, connected by a
solid line to guide the eye. The measured SMASH SNR
values were 14.4 (M = 2), 14.5 (M = 3), and 13.8 (M = 4).
(In all cases, estimated measurement error is smaller than
the marker size.) The dashed line represents the scaling of
SNR with acquisition speed that would be expected for
purely orthonormal SMASH weights. The slight depres-
sion of measured SNR at M = 4 results from a relative
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increase in the norm of the weights for the highest spatial
harmonic used in the reconstruction.

Indeed, all the general features of the SNR profiles in
Figs. 3-5 may be predicted from the values of the weights
used for image reconstruction. For the phantom experi-
ments described here, these weights were as follows,

I1=1 1=2 1=3 1=4
m=-1| 0.3+0.7i|1.0—-0.1i|] 0.2—1.0i|—0.6—0.4i
m=0 1 1 1 1 [36]
m=1 0.3—0.7i|1.0+0.1i| 0.2+1.0i|—0.6+0.4i
m=2 |-0.6-0.7i|1.1+0.1i|—1.1+0.3i| 0.4—0.8i
where harmonic number runs fromm = —1 tom = 2 down
each column, and component coil number runs from | = 1
to | = 4 along each row. The norms and relative vector

angles of these weights may be calculated from dot prod-
ucts of each row in Eq. [36] against itself and against the

other rows:

m=-1m=0m=1m=2
m= -1 0 71 82 89
m=1 82 71 0 70
m=2 89 74 70 0

Departures from 90° in the angle matrix of Eq. [37] repre-
sent the nonorthogonalities that result in noise variance
oscillations in Figs. 3 and 4. Inspection of the weight
vector normalizations confirms that the normalization condi-
tion of Eq. [35] is met or exceeded for all but the highest
harmonic, since only the m = 2 harmonic (norm = 4.2) has a
larger norm than the m = 0 harmonic (norm = 4.0).
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FIG. 5. Mean pixel-by-pixel SNR as a function of acquisition speed
for reference and SMASH images of a resolution phantom using the
four-element array. Mean SNR was calculated by averaging pixel-by-
pixel SNR values in each reference or SMASH image over the
circular region spanned by the phantom. Open triangles, sum of
squares reference; open squares, simple sum reference; open
diamonds connected by solid line, SMASH; dashed line, SNR that
would be expected for orthonormal effective SMASH weights. SMASH
acceleration factors range from M = 2 to M = 4. As in Fig. 2, dotted
lines represent reference SNR values that would be expected if
equivalent speed increases were possible using sequential tech-
niques alone.

We emphasize that the theoretical curves in Figs. 3-5 are
exact results calculated from Eg. [15], making no appeal to
orthonormality. The principles of orthogonality and normal-
ization serve, however, as useful tools for predicting SNR
behavior using only a small set of component coil weights
as a priori information. For example, the norms and
overlap angles for a sample SMASH reconstruction in the
eight-element array used elsewhere to achieve eightfold
accelerations (10,11) are as follows:
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FIG. 6. Mean pixel-by-pixel SNR as a function of acquisition speed
for sample SMASH image reconstructions in an eight-element array,
as predicted from properties of the weights in Eqg. [38]. Open
triangles, sum of squares reference; open squares, simple sum
reference; open diamonds connected by solid line, SMASH; dashed
line, SNR that would be expected for orthonormal effective SMASH
weights. SMASH acceleration factors range from M= 2to M = 8. As
in Fig. 2, dotted lines represent reference SNR values that would be
expected if equivalent speed increases were possible using sequen-
tial techniques alone.

oscillations are expected to be significantly smaller than
those shown in Fig. 4 (a fact easily confirmed by simula-
tions). Furthermore, the favorable normalization behavior
allows a nearly optimal average SNR efficiency at the
highest SMASH factors.

In Vivo Measurements

Noise oscillations in an in vivo SMASH image are docu-
mented in Fig. 7. For purposes of orientation, reference
sum of squares and SMASH images, reproduced from Ref.

Norm: M= —3lm=-2m=-1m=0m=1m=2m=3/m=4
| 45 | 57 |127| 57 | 45 | 58 | 7.8
m=-3lm=-2m=-1m=0m=1m=2m=3|/m=4
m= —3 0 86 81 79 88 86 86 82
m=-2| 86 0 89 75 82 89 86 89
m=-1| 81 89 0 78 77 82 88 89
Angle: m=20 79 75 78 0 78 75 79 81 [38]
m=1 88 82 77 78 0 90 82 83
m = 86 89 82 75 90 0 86 77
m = 86 86 88 79 82 86 0 77
m=4 82 89 89 81 83 77 77 0

Figure 6 shows the mean SNR as a function of acceleration
factor predicted from these weights. Though residual non-
orthogonalities do remain, a large number of the overlap
angles in this case approach 90°, and noise variance

9, are included in the top panel, with the shifted positions
of the noise measurement region indicated by adjacent
boxes with diamonds on the two images. The solid dia-
monds in the plots beneath show the corresponding mea-
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FIG. 7. Noise standard deviation as a function
of position in the phase-encoding direction for
an in vivo data set (from a scan of the abdomen
and thorax of a healthy adult volunteer using a
single-shot RARE sequence). Top row, sum of
squares reference image (left) and double-
speed SMASH image (right). Boxes with dia-
monds indicate positions of the region of interest
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Bottom row, measured, simulated, and theoreti-
cally predicted noise standard deviation as a
function of position. Solid diamonds, measured
noise standard deviation in the boxed regions
indicated on the images above; open circles,
noise standard deviation profile based on 16
simulated replicas; solid lines, theoretically pre-
dicted noise standard deviation profiles.
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sured noise standard deviations as a function of box
position. Also included in these plots are the simulated
standard deviation profile (open circles) and the predic-
tions of the theory (solid lines). As may be seen, the in vivo
measurements agree well both with simulations and with
theory. Given the substantial spatial variations shown here,
it is clear that traditional empirical SNR estimation tech-
niques, which measure signal and noise in different re-
gions of the image, must be approached with caution in
SMASH imaging.

DISCUSSION

As has been demonstrated in the theoretical and experimen-
tal investigations presented here, SNR in a SMASH imag-
ing study depends in general on the preexisting degree of
noise correlation in the coil array used for imaging, and on
the weight factors used for SMASH reconstruction. These
two determinants may be combined into a single set of
effective weights, [i™)}, as defined in Eq. [30]. Normaliza-
tion of the effective weights controls the average noise
level in the SMASH image, and a departure from the
normalization condition raises or lowers baseline SNR by
altering the noise out of proportion to the signal. On the
other hand, orthogonality of the effective weights con-
trols the spatial distribution of noise. A departure from
orthogonality introduces correlations between adjacent
lines of k-space, which in turn leads to predictable oscilla-
tory variations in noise standard deviation across the
image.

Image plane orientation and coil array geometry are the
principal determinants of SMASH weight factors. In prac-
tice, the weights can vary significantly as the position and
orientation of the image plane with respect to the coil array

Pixel number

64 96 128 32 64 96 128
Pixel number

is varied, with large tilt angles away from the plane of the
array generally leading to reductions in SNR as a result of
degraded normalization behavior. However, the phantom
experiments of Fig. 5 and the predictions of Fig. 6 show
that favorable normalization behavior can be achieved at
least for image planes parallel to realistic arrays. In the
future, tailored array designs may be developed to opti-
mize average SNR for particular anatomical regions or
imaging applications.

The presence of noise variance oscillations in SMASH
images raises another interesting possibility for coil array
design. Since these noise variance oscillations are not
necessarily accompanied by oscillations in image inten-
sity, it may be possible to engineer arrays that have
localized SNR “‘hot spots” in particular regions of interest.
This would involve a deliberate selection for particular
nonorthogonal weights, such that SNR is maximized in
anatomic regions of interest, at the expense of SNR in less
interesting outlying regions.

Additional sequence-dependent effects not explicitly
considered in this article can also influence SNR in a
SMASH image reconstruction. For example, in single-shot
sequences such as echoplanar imaging, SNR can be recov-
ered to some extent by virtue of the faster acquisition itself,
due to reduced relaxation and hence reduced attenuation
of central k-space lines in an accelerated echo train. Thus,
the final SNR in any given SMASH image may result from a
balance of sequence-specific and reconstruction-specific
factors.

The SMASH technique operates by exploiting correla-
tions between the MR signals in different array elements.
The presence of such correlations suggests that when data
are acquired in an array of spatially distinct component
coils, a certain redundancy is introduced into the tradi-
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tional MR spatial encoding procedure using field gradi-
ents. Using appropriate reconstruction strategies, some of
the redundant information may be extracted from the data.
Such a line of argument naturally leads to the question of
whether SMASH, or similar partially parallel imaging
schemes, may be used to enhance the total achievable SNR
in MR images. If SNR may be preserved in reduced
acquisition times, then one would expect that the time
saved could then be applied for SNR enhancement, for
example, via additional signal averaging. When SMASH
images are compared with images from a single RF coil, or
with simple combinations of component coil images in RF
coil arrays, such an averaging procedure would indeed
yield an improved SNR. Optimized SMASH reconstruc-
tions represent true increases in SNR per unit time over
these reference images. Such references are admittedly
nonoptimal, however, since optimal pixel-by-pixel array
combinations have been shown to have a higher baseline
SNR. While SMASH uses the redundancy inherent in
multiple component coil signals to increase imaging speed,
the optimal pixel-by-pixel approach abides by the tradi-
tional limits on acquisition speed, but resolves the redun-
dancy instead in a way that maximizes SNR for a given
acquisition. This dichotomy is inherent in the use of MR
coil arrays: the acquisition and reconstruction strategy may
be designed to optimize either for SNR or for speed, or else
for some intermediate combination of the two. There is no
evidence at present suggesting that the pixel-by-pixel
optimum derived by Roemer et al (12) may be exceeded on
the basis of reconstruction strategy alone. However, se-
guence-dependent effects alluded to earlier, such as dimin-
ished relaxation in accelerated single-shot images, may
eventually allow net gains in SNR efficiency using par-
tially parallel acquisitions.

CONCLUSIONS

SMASH may be used to increase MR imaging speed
without increasing gradient switching rate or RF power
deposition, generally with some absolute penalty in SNR,
but with the potential for preserved average SNR effi-
ciency. The theory, simulations, and experimental results
presented in this article identify the key parameters that
influence SNR in a SMASH acquisition and image recon-
struction. An understanding of these parameters may be
used to guide coil array design for the optimization of SNR
in applications of rapid and ultra-rapid parallel MRI.

Sodickson et al.
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