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Abstract

Cardiovascular magnetic resonance (CMR) using T2-weighted sequences can visualize myocardial edema. When
compared to previous protocols, newer pulse sequences with substantially improved image quality have increased
its clinical utility. The assessment of myocardial edema provides useful incremental diagnostic and prognostic
information in a variety of clinical settings associated with acute myocardial injury. In patients with acute chest
pain, T2-weighted CMR is able to identify acute or recent myocardial ischemic injury and has been employed to
distinguish acute coronary syndrome (ACS) from non-ACS as well as acute from chronic myocardial infarction.
T2-weighted CMR can also be used to determine the area at risk in reperfused and non-reperfused infarction.
When combined with contrast-enhanced imaging, the salvaged area and thus the success of early coronary
revascularization can be quantified. Strong evidence for the prognostic value of myocardial salvage has enabled its
use as a primary endpoint in clinical trials. The present article reviews the current evidence and clinical applications
for T2-weighted CMR in acute cardiac disease and gives an outlook on future developments.
“The principle of all things is water”
Thales of Miletus (624 BC - 546 BC)

Introduction
Cardiovascular magnetic resonance (CMR) is well-
established and increasingly used in clinical practice for
the diagnosis and management of cardiovascular disease
[1-3].
Importantly, recent technological advances of CMR

have introduced its use for visualizing certain tissue
changes in patients with acute myocardial diseases. This
is of particular interest in patients with suspected
ischemic disease, a broad and heterogeneous population
that challenges the clinician in terms of: 1) accurately
establishing the diagnosis; 2) risk stratification; 3) thera-
peutic decision making; and 4) monitoring response to
therapy [4].
CMR is uniquely able to integrate, in a single exami-

nation, an accurate quantitative assessment of left ven-
tricular (LV) function, structural abnormalities of the
myocardial tissue including edema, infarct size, and
myocardial salvage as well as its microvascular status.

Therefore, CMR has an unparalleled potential as the
main diagnostic tool in acute cardiac disease by provid-
ing information on the stage, degree, and extent of
reversible and irreversible myocardial injury [5,6].
Specifically, T2-weighted CMR has recently generated

significant interest and has been employed to distinguish
acute coronary syndrome (ACS) from non-ACS and
recent from remote infarction in patients with undiffer-
entiated chest pain [7-9]. Furthermore, T2-weighted
CMR can be used to determine the area at risk in reper-
fused and non-reperfused myocardial infarction [10,11].
When combined with contrast-enhanced imaging of
irreversible injury ("late gadolinium enhancement”,
LGE), the salvaged area at risk can be quantified and
thus the success of early revascularization therapy can
be assessed [12]. Moreover, myocardial salvage assess-
ment has been shown to be independently associated
with adverse cardiac events, opening new perspectives
on its use as primary endpoint in clinical trails and in
studies testing novel reperfusion strategies [13].
Edema imaging is also useful in other acute cardiac

diseases, such as transplant rejection [14,15], myocarditis
[16,17], as well as stress (Takotsubo) cardiomyopathy
[18-20] and the clinical role continues to expand.
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Therefore, it is timely to review T2-weighted CMR,
state-of-the-art techniques, limitations and its clinical
usefulness for acute cardiac disease. We will discuss the
level of evidence and give an outlook on future
developments.

Myocardial Edema
Definition and Clinical Consequences
Edema (from ‘óidema’, the Greek word for ‘swelling’) is
an elementary generic component of the tissue response
to any acute injury regardless of its etiology (e.g.
mechanic, toxic, ischemic) and therefore represents an
important diagnostic target for assessing the acuity of
tissue damage in vivo [6]. The term myocardial edema
refers to both myocyte swelling (cytogenic edema) and
fluid accumulation in the interstitial space (vasogenic
edema). Several acute and chronic active conditions
including myocardial infarction [21,22], reperfusion
injury [23,24], inflammation [16,17], pulmonary hyper-
tension [25], cardiopulmonary bypass [26-28], cardiople-
gic arrest [27], cardiac transplantation [29] and cardiac
transplant rejection [14,15] are accompanied by myocar-
dial edema.
Of note, myocardial edema is not only a nonspecific

yet invariable pathological concomitant of acute injury;
it has also significant and relevant pathophysiological
consequences itself. The presence of myocardial edema
increases the stiffness and decreases the compliance of
the LV [30,31]. In addition, a mere 3.5% increase in
myocardial water content has been reported to result in
the reduction of the cardiac output by 40% [32].
Increased hydrostatic pressure within the interstitial
space can exacerbate the extent of necrosis by capillary
compression [33]. Furthermore, edema may contribute
to postischemic myocardial dysfunction (stunning),
arrhythmia [24], and reduced ventricular compliance
[34]. When chronic, myocardial edema results in further
alteration of myocardial structure, most importantly in
the development of myocardial fibrosis [35]. It is how-
ever not fully understood, how edema affects systolic
and diastolic function, long-term tissue composition,
and electrical stability. Figure 1 illustrates possible
effects of edema caused by ischemia/reperfusion injury
on myocardial function and myocyte injury/survival [24].

Myocardial Edema Formation in Ischemia and
Reperfusion
Almost 80% of the myocardium is water, of which 77%
is held in intracellular components, whereas 23% are
found in the intravascular and a very small in the inter-
stitial compartment.
Water molecules can permeate cellular or vascular

membranes but under normal conditions the intracellu-
lar-extracellular water balance is kept in equilibrium by

an active, ATP-dependent Na+/K+ exchange and by the
binding of water to complex molecules such as intracel-
lular proteins (Figure 2A).
Ischemia with or without reperfusion causes altera-

tions in these fluid balance mechanisms leading to the
development of cell swelling, increased interstitial water
accumulation or both.
Very early after the onset of ischemia/hypoxia, water

is released from proteins because of lactate-induced
acidosis, increasing the intracellular fraction of free,
unbound water [36]. Furthermore, failure of the ATP-
dependent Na+/K+ channels results in intracellular Na+
accumulation with subsequent raise of the intracellular
osmotic pressure and, accordingly, cellular water influx
(Figure 2B). At this stage of purely intracellular edema,
capillary membranes, more resistant to ischemia, are
still intact. With persisting (>60-90 min) ischemia, capil-
lary membranes lose their integrity and become perme-
able to complex molecules including proteins and
plasma cells. Subsequent leakage of water from the
intravascular space into the interstitial space [37] leads
to net water inflow and interstitial edema (Figure 2C).
Finally, cardiomyocyte death (oncosis) is followed by
necrosis, a cascade of mostly inflammatory reactions for
removing dead cells and debris. Reperfusion at this late
stage of ischemic injury with inflow of normo-osmotic
blood into this hyperosmotic region further enhances
extracellular water accumulation and edema [24].

Duration of Myocardial Edema After an Ischemic Event
It is unclear about how long myocardial edema persists
after an ischemic event. In dogs the myocardial water
content, as measured by histopathological methods, was
still significantly increased in the infarct zone after 3
weeks [38]. In another canine model, Aletras et al [10]
observed edema 2 months after infarction. Pathology
studies in humans have shown complete resorption of

Figure 1 Possible effects of myocardial edema induced by
ischemia and reperfusion on myocardial function and survival.
Adapted with permission obtained from the Oxford University Press
© Garcia-Dorado et al. Cardiovasc Res 1993, 27: 1555-63.
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edema after acute infarction within 5 weeks [39]. After
alcohol-induced infarction in patients with hypertrophic
obstructive cardiomyopathy edema was present after
28 days in all patients, whereas it was not found after
3 months [40]. Other studies in acute reperfused ST-
elevation myocardial infarction patients have shown pro-
longed postinfarction edema after 6 or, in some patients,
even 12 months [41,42]. Interestingly, persistence of
myocardial edema after infarction varied from one week
to 12 months in these studies. Reasons for persistent
myocardial edema, particularly long after an ischemic
event, might be due to increased wall stress and/or resi-
dual/recurring ischemia within the infarcted region [24].
Furthermore, compromised drainage of the infarct
region owing to vessel damage and reparative processes,
which last for months after an ischemic event, could
cause persistent myocardial edema [41]. However, also
artifacts of the T2-weighted imaging methodology have
to be considered as a potential cause of prolonged
edema presence. Thus, the exact duration and determi-
nants of edema persistence after an ischemic event and
possible prognostic implications remains to be studied
further.

Edema Assessment
In the past, edema could not be used as a diagnostic tar-
get/tool, because even histological techniques failed to
provide reliable qualitative or quantitative data on its
presence, extent, and regional distribution [6]. Three
modalities have been used for the in vivo visualization
of myocardial edema: Echocardiography, computed
tomography (CT), and CMR.
As a surrogate for an increased myocardial water con-

tent, echocardiography relies on an increase of LV mass
and wall thickness. Since the increase in LV mass is not
specific for myocardial edema, the use of echocardiogra-
phy to identify myocardial edema is limited, although
recent advances in high-frequency ultrasound imaging
techniques may be helpful [31,43].

Powell et al. [44] published pilot data on using CT for
detecting myocardial edema. Poor temporal resolution and
motion artefacts have limited the use of CT in clinical set-
tings to quantify myocardial edema. Recently, Mahnken et
al. [45] reported the ability of dual-source CT to detect
myocardial edema in good agreement with CMR in a por-
cine acute myocardial infarction model. Confirmative stu-
dies in other clinical settings, however, are still lacking.
Using the water-sensitive properties of T2-weighted

CMR, visualization of myocardial edema in vivo is possi-
ble within a few breath holds, without using radiation or
contrast agents [6,46,47].

CMR for the Assessment of Edema
Recent advances in T2-weighted CMR could signifi-
cantly alleviate previous problems caused by an inher-
ently low signal-to-noise ratio (SNR) and inconsistent
image quality of previously used protocols. Many centers
have implemented T2-weighted CMR as part of their
standard protocols and there is a strong body of evi-
dence on its useful application in several clinical settings
[6,46]. Therefore, CMR has an exceptional role in iden-
tifying and quantification of myocardial edema in vivo.
In most CMR sequences, tissue contrast is mainly

determined by the relaxation properties of protons after
radiofrequency pulses. The long T2 relaxation times of
water-bound protons are used to generate a water-speci-
fic contrast when applying T2-weighted sequences
resulting in a high signal intensity of edematous tissue.
In 1983, Higgins et al. [48] showed for the first time a
direct relation between T2 (spin-spin) relaxation time
and myocardial water content in a canine model of
acute myocardial infarction, resulting in a positive corre-
lation of tissue water content to the signal intensity on
T2-weighted images. Similar to the brain, significant T2
lengthening has been observed in acute ischemia,
accompanying a 3-5% increase in overall water content
[48]. Importantly, in reperfused infarcts the water con-
tent may increase by as much as 28% [24].

Figure 2 A simplified schematic view of edema evolution in ischemic injury to the myocardium. A: Normal equilibrium. B: Early phase of
injury: intracellular edema. C: Late phase of injury: interstitial edema. Adapted with permission obtained from the Nature Publishing Group ©

Friedrich MG. Nat Rev Cardiol 2010, 3: 385-7.
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The absolute water content, however, is not the only
mechanism with a strong impact on T2. As the T2 of
free water is about 40 times longer than that of bound
water [49], the T2 of intracellular water increases sub-
stantially just by being released from proteins (as in
acute ischemia). Accordingly, experimental studies have
suggested that the increase of free water and decrease of
bound water fractions have a stronger impact on T2
than the overall water content [50].
Extensive preclinical and human studies have confirmed

a close correlation between T2 and edema not only in
(irreversible) myocardial infarction, but also in severe tran-
sient myocardial ischemia. Elevated myocardial T2 is also
known to accompany myocarditis/inflammation [16,17],
stress (Takotsubo) cardiomyopathy [18-20] and/or cardiac
transplant rejection [14,15]. Notably, similar to LGE, the
global, patchy, or subepicardial regional distribution pat-
terns of edema in these entities typically are distinct from
ischemic injury, which predominantly affects the subendo-
cardium or is regionally transmural in a coronary artery
territory (Figure 3, 4, 5 and 6).

T2-weighted Sequences for Edema Assessment
Standard T2-weighted imaging of myocardial edema
typically utilizes turbo spin-echo (TSE) readouts with or

without fat saturation pulses, mostly combined with
dark-blood preparation [51]. Currently, most of the clin-
ical experience in visualizing myocardial edema has
been reported for short-TI triple-inversion recovery pre-
pared fast spin echo sequences (STIR). The inversion
pulses for fat and blood suppression provide excellent
contrast between regional edema and normal myocar-
dium due to the dual suppression of the fat and flowing
blood signal [52]. Furthermore, the inverse T1 weighting
properties of these sequences increase their sensitivity to
free tissue water [50]. Alternatively, double inversion
recovery sequences, which may provide a higher SNR,
have been used in clinical studies [8,53].
More recently, two new T2-weighted, SSFP-based

sequences for cardiac application have been published,
either using T2 preparation [54] or a hybrid approach
with a spin echo pulse [55]. Both may offer a more robust
image quality with preserved contrast-to-noise ratio when
compared with STIR. Non-prepared SSFP sequences have
been also used to detect myocardial edema with a moder-
ate sensitivity and high specificity [56].
An alternative approach to T2-weighted imaging using

signal intensity as a surrogate for T2 prolongation, is
the direct determination of myocardial T2 relaxation
times [57]. Thereby, several limitations associated with
conventional T2-weighted imaging (see below) can be
addressed, resulting in a potentially more reliable
method for detection of myocardial edema. Furthermore
this approach would overcome problems with identify-
ing and verifying global edema and associated changes
of myocardial T2. Clinical data, however, are still
lacking.

Limitations of T2-weighted CMR
The STIR technique produces useful images in most
clinical cases, but can fail in some instances [58]. The
inherently low signal-to-noise ratio and the relatively
small differences in contrast-to-noise ratios between
injured and normal myocardium remain challenging
[46]. Therefore, a slice thickness of at least 8-10 mm is
recommended to increase SNR. Furthermore, it is essen-
tial to have a uniform signal reception within the field of
view; therefore, a reliable surface-coil intensity correc-
tion or the use of a body coil is important. The dark-
blood preparation used in TSE T2-weighted imaging
may introduce significant signal loss due to through-
plane cardiac motion, typically most noticeable in the
posterior wall. Such a minor signal loss of the inferior
wall can be seen in Figure 5A. In some cases, such sig-
nal loss causes an intensity variation indistinguishable
from the increase in T2 arising from edema, or it may
cause normal myocardium to appear to have increased
T2, resulting in a false-positive diagnosis [46,54,55]. The
latter has been recently addressed by specialized

Figure 3 Myocardial edema in a patient with active
myocarditis. A: T2-weighted CMR image showing subepicardial
edema in the anteroseptal segment. B: Computer-aided signal
intensity analysis of the T2-weighted image with color-coded
display of relative signal intensity, normalized to skeletal muscle.
Blue indicates a signal intensity ratio of myocardium/skeletal muscle
of ≥2.0, indicating edema, green indicates normal signal intensity
(1.4-1.9). C: Contrast-enhanced image (late gadolinium
enhancement) showing a high signal intensity in the same region
indicating necrosis. D: Computer-aided signal intensity analysis of
the necrosis image with color-coded display of relative signal
intensity, normalized to remote myocardium. Red indicates a signal
intensity of >5 standard deviations above remote myocardium.
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techniques aiming to improve acquisition timing [59],
which however, is difficult at higher heart rates. Particu-
larly in patients with arrhythmia and other motion arti-
facts, such problems may result in non-diagnostic
images.
Furthermore, an incomplete dark-blood preparation

sometimes leaves a bright rim blood artifact adjacent to
the endocardium ("slow flow artefact”), making it diffi-
cult to differentiate subendocardial edema from

intracavitary blood (Figure 6A) [46]. One method to
reduce this in clinical practice is to compare T2-
weighted images of the same cardiac phase side-by-side
with cine images to verify wall thickness [22].
Another limitation is the often qualitative nature of

T2-weighted imaging. Interpretation depends on regio-
nal differences in myocardial signal intensity, which may
vary depending on sequence parameters (echo times,
slice thickness etc.). Especially when comparing edema

Figure 4 CMR Findings in a Patient With Stress-Induced Cardiomyopathy Takotsubo. There is characteristic apical contractile dysfunction (A, B)
in the absence of late gadolinium enhancement (C). T2-weighted images showing normal signal intensity of the basal myocardium (D), but
global edema in the apical and midventricular myocardium matching the distribution of the LV wall motion abnormalities (E, F).

Figure 5 Assessment of myocardial salvage after acute, reperfused myocardial infarction. A: T2-weighted CMR showing high signal
intensity of the anterior, anteroseptal and inferoseptal segments (area at risk). B: Computer-aided signal intensity analysis of the T2-weighted
image normalized to normal, uninjured myocardium. Red indicates a signal intensity of >2 standard deviations above remote, uninjured
myocardium. C: Contrast-enhanced image (late gadolinium enhancement) showing high signal intensity reflecting increased contrast
accumulation in necrotic myocardium. D: Computer-aided signal intensity analysis of the late gadolinium enhancement image with color-coded
display of relative signal intensity, normalized to remote myocardium. Red indicates a signal intensity of >5 standard deviations above remote,
uninjured myocardium. The comparison of edema (panels A, B) with necrosis (panels C, D) shows myocardial edema in areas without necrosis,
indicating major myocardial salvage.

Eitel and Friedrich Journal of Cardiovascular Magnetic Resonance 2011, 13:13
http://www.jcmr-online.com/content/13/1/13

Page 5 of 11



with scars, cut-off values for defining abnormal vs. nor-
mal tissue for automated quantification are not suffi-
ciently standardized between methods.
As mentioned above, two recently introduced techni-

ques address several of these limitations, but these new
methods are also qualitative and still depend on subjective
interpretation of T2-weighted images and relative regional
differences in myocardial signal intensity. Particularly,
direct measurement of T2 by mapping techniques could
overcome such limitations [57]. Furthermore, new
sequences using shorter acquisition protocols, such as sin-
gle-shot techniques [56], may provide a more robust
image quality.
In summary, CMR protocols for edema detection still

require further optimization. Despite these challenges,
however, T2-weighted CMR usually provides images
with diagnostic quality, allowing a clinically useful inter-
pretation in most patients.

Clinical Application of T2-Weighted CMR in Acute
Cardiac Disease
T2-weighted CMR in Acute Coronary Syndrome
CMR imaging is emerging as a diagnostic tool for the
detection, differential diagnosis, management and prog-
nostication of patients with suspected or established
ACS [6,8,19,60,61]. Particularly, T2 weighted imaging
plays a pivotal role in patients with acute chest pain by
identifying myocardium not irreversibly injured but at
risk of further injury. Furthermore, in patients with
suspected ischemia and a history of previous infarcts,
T2-weighted imaging can reliably differentiate acute
myocardial injury from chronic infarcts [7].
A recent prospective study demonstrated that T2-

weighted CMR improves diagnostic accuracy when char-
acterizing patients with possible ACS who presented to
the emergency department with chest pain. Adding T2-
weighted imaging to a standard CMR protocol (function,
perfusion, and scar imaging) increased the specificity,

positive predictive value, and overall accuracy for detection
of an ACS from 84% to 96%, 55% to 85%, and 84% to 93%,
respectively [8]. Moreover, including T2-weighted imaging
in the CMR protocol added significant value over clinical
assessment and traditional cardiac risk factors.
T2-weighted imaging provides incremental diagnostic

information above and beyond viability assessment, with
acuity of cardiac disease being one of the most impor-
tant determinants for patient management. Specifically,
T2-weighted images can determine the acuity of many
patients with unstable angina as early as 30 min after
the onset of ischemia, a feature that cannot be ascer-
tained by current generation biomarkers or CMR scar
imaging using LGE [62].
A recent study extended this work and demonstrated

that CMR with edema imaging has great potential to
stratify patients admitted with Non-ST-Segment Eleva-
tion (NSTE) ACS by identifying higher-risk patients
who would qualify for early invasive management strate-
gies [9]. These findings indicate that detecting myocar-
dial edema in vivo in patients with NSTE-ACS can be a
powerful tool with major clinical implications. However,
further randomized studies are warranted to study the
impact of T2-weighted CMR imaging on selection of
management strategies and ultimately on prognosis in
patients with NSTE-ACS.
Edema imaging is also useful in patients with tropo-

nin-positive chest-pain and unobstructed coronary
arteries. In this diagnostic challenging and important
group of patients, T2-weighted imaging is complemen-
tary to LGE imaging for identifying the underlying etiol-
ogy. The differential diagnosis includes ischemic
infarction, myocarditis, stress-induced cardiomyopathy
(Takotsubo) and/or other cardiomyopathies (e.g. dilated
cardiomyopathy) [6,19,63]. In patients with infarction,
edema will be transmural and localized in a single cor-
onary territory with or without (aborted infarction)
necrosis as defined by LGE [64] (Figure 5, 6). In

Figure 6 T2 weighted imaging for detection of intramyocardial hemorrhage. A: T2 images showing a hypointense core indicating
intramyocardial hemorrhage within the area of myocardial edema (arrow). Asterisks refer to inadequately suppressed blood signal ("slow flow
artefact”) B: Computer aided signal intensity analysis normalized to normal myocardium and to skeletal muscle (C). Contrast-enhanced image
showing a transmural necrosis with a core of late microvascular obstruction (arrow) (D).
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inflammation/myocarditis, however, the regional distri-
bution of edema is usually not reflective of a coronary
perfusion bed and typically appears with a global or
mainly subepicardial distribution [17] (Figure 3). The
pattern of edema in Takotsubo cardiomyopathy is char-
acterized by a global apical and midventricular edema
matching the distribution of LV dysfunction in the
absence or, rarely, presence of subtle focal or patchy
myocardial scarring [18,19] (Figure 4). The exact patho-
physiological mechanisms underlying the development
of myocardial edema in Takotsubo cardiomyopathy
remains unclear but inflammation, increased LV wall
stress and/or transient ischemia appear pivotal. Impor-
tantly, edema imaging is not only helpful in establishing
a diagnosis, but can also provide valuable insights into
the underlying pathophysiology.

T2-weighted CMR in Acute ST-elevation Myocardial
Infarction
Experimental studies [10] have demonstrated that regio-
nal hyperintense areas on in vivo T2-weighted images
obtained 2 days following left anterior descending cor-
onary occlusion accurately define the ischemic area at
risk in both reperfused [10] and nonreperfused infarc-
tions [11]. The size of the edematous region reflects the
perfusion bed of a coronary artery, which represents the
area at risk. Thus, in a clinical setting of reperfused
myocardial infarction, edema as defined by high T2 sig-
nal intensity is transmural, even if the acute irreversible
injury (necrosis) is not.
Friedrich et al. [12] applied this technique to patients

and systematically assessed myocardial salvage by com-
paring T2-weighted (area at risk) with LGE (infarct size)
CMR images in 92 patients with reperfused infarction.
In this study, the area at risk identified by T2 imaging
were consistently transmural and exceeded areas of irre-
versible injury defined by LGE by 16 ± 11%. The sal-
vaged area at risk remains LGE negative at follow-up as
a result of successful reperfusion [65-68].
Furthermore, trials demonstrated that myocardial sal-

vage assessment by CMR is a reproducible tool [69] that
identifies and quantifies myocardial salvage in excellent
agreement with SPECT [68,70] and angiographic scores
of myocardial salvage [67,71]. These data clearly show
that edema imaging enables the use of myocardial sal-
vage as a robust marker for assessing the success of cor-
onary revascularization in clinical settings.
While myocardial salvage assessed by CMR is inde-

pendently associated with adverse LV remodelling [65]
and more importantly with hard clinical endpoints
(mortality and major adverse cardiac events) [13], quan-
tifying the extent of the salvaged area at risk after revas-
cularization might serve as a strong endpoint for clinical
trials investigating novel reperfusion strategies.

Theoretically, there are advantages of measuring the
salvaged area at risk over infarct size as an indicator of
therapeutic efficacy in clinical trials. It is important to
keep in mind that the size of the area at risk and the
infarction depend on the size of the perfusion bed. Con-
sequently, these parameters are subject to significant
baseline differences between patients and even indivi-
dual clinical events, independent of other clinical cir-
cumstances including revascularization. In clinical trials,
this bias may account for more than 50% of infarct size
variability [72,73]. As a more robust surrogate endpoint
for clinical research, the myocardial salvage index is cal-
culated by adjusting the volume of myocardial salvage to
that of the area at risk and has been already successfully
applied in clinical trials [74,75].
Recent studies have also demonstrated the potential of

T2-weighted imaging to detect intramyocardial hemor-
rhage (IMH), a marker of severe reperfusion injury
[76-79]. As IMH occurs only in acutely reperfused,
infarcted myocardium, T2 values in these regions are
determined by the relative contribution of two opposing
mechanisms: 1) increase in T2 caused by tissue edema;
2) a drop in T2 induced by the paramagnetic effect of
deoxyhemoglobin or degradation products of hemoglo-
bin as found in hemorrhage or thrombus [80]. The
resulting hypointense core within the area of tissue
edema seen on T2-weighted images has been shown to
be an independent predictor of adverse LV remodeling
regardless of the initial infarct size and microvascular
obstruction [76]. However, histological proof of the spe-
cificity of hypointense cores in T2-weighted images (vs.
more specific T2*-weighted CMR) is still awaited [81]
and the clinical significance of such findings have not
been established yet. However, currently a multipara-
metric CMR protocol including T2-weighted imaging
and late enhancement imaging for assessment of severe
reperfusion injury is recommended.

Alternative CMR Methods for Area at Risk
Measurement
Recently also other CMR methods for area at risk mea-
surement have been suggested. One of these methods is
the endocardial extent of infarction as assessed by LGE
CMR [82]. The pathophysiological background for this
method is based on experimental studies showing that
the endocardial extent of infarction is established
approximately 40 minutes after coronary occlusion [83].
Thereafter, the infarcted area will increase by transmural
progression from the endocardium to the epicardium,
referred to as the wavefront phenomenon [83]. Thus,
timely reperfusion is thought to limit the transmural
infarct progression rather than the endocardial extent of
infarction, implying that the endocardial extent of
infarction could potentially be used for assessing the
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area at risk. However, in the situation of early reperfu-
sion, infarction might be completely aborted [64,84]
resulting in difficulties when assessing the area at risk
based on infarct characteristics [85]. Consequently a
recent study has demonstrated that the endocardial
extent of infarction as assessed by LGE CMR underesti-
mates the area at risk in comparison to T2-weighted
imaging, especially in patients with early reperfusion and
aborted myocardial infarction [85].
Another potential CMR method for area at risk mea-

surement is to assess the dysfunctional myocardium in
cine SSFP imaging [86]. Myocardial salvage can be
defined using this approach as dysfunctional (cine ima-
ging) but viable (no LGE) myocardium. Such a simple
algorithm for myocardial salvage assessment is appeal-
ing, as measurement of the volume of the dysfunctional
infarcted myocardium is simple, and the SSFP sequence
for assessment of LV function is a robust and well-
established CMR technique. However, such an approach
is mainly limited by the fact that the complete area at
risk exhibits functional impairment only at the time of
coronary artery occlusion, whereas the extent of myo-
cardial stunning may subside over time after reperfusion
[87]. Consequently, T2-weighted CMR imaging early
after infarction appears much more accurate and useful
for quantifying myocardial salvage, since it can be
derived up to one week after acute infarction.
Limiting the utility of a functional definition of the

area at risk, there is evidence that areas of functional
impairment have been found to be distinctly smaller
than the area at risk as derived from T2-weighted ima-
ging [12,13,65]; thus, the mere functional assessment
likely underestimates the area at risk, especially in
patients with early reperfusion and aborted myocardial
infarction. This may in part be due to passive motion of
the border zones, but also because of only minor
impairment of function in less severely injury parts of
the salvaged area at risk. Consequently, it was shown
that patients with extensive myocardial salvage usually
develop only minor regional wall motion abnormalities,
whereas a large area of edema/area at risk can be
detected [64]. Furthermore, the lack of a distinct border
between normal and abnormal function makes it diffi-
cult to quantify the area and would allow for significant
observer bias. Finally, clinical data using a functional
area at risk measurement are limited/lacking, whereas
T2-weighted imaging has been validated against histolo-
gical [5] and angiographic measurements [67,71] of
myocardium at risk and has been successfully applied in
clinical trials [74,75].
Taken together other CMR methods for myocardium

at risk assessment have significant limitations. Therefore
T2-weighted CMR imaging currently seems to be the

most accurate and best validated CMR technique for
area at risk measurement.

Future Challenges
Although T2-weighted CMR technology has improved
substantially in recent years, it will further benefit from
more robust protocols. T2 quantification (mapping)
offers the potential for improved detection of myocardial
edema, but further studies are warranted to evaluate the
clinical applicability of this technique in the range of
conditions that are known to globally or regionally affect
the myocardial water status. Furthermore, scanning pro-
tocols have to be simplified and consolidated, and post-
CMR processing and evaluation procedures need to be
standardized and less time-consuming [6].
Future studies should address how much of a myocar-

dial injury is needed to become apparent on CMR
images of myocardial edema and how clinical and biolo-
gical factors (e.g. intensity and/or duration of ischemia)
affect the magnitude, duration, and time course of myo-
cardial T2 changes. Furthermore, experimental studies
are needed to clarify the relative importance of factors
capable of influencing T2 signals during and after ische-
mia [88].
Studies in large, well-defined subsets of patients will

be needed to define the additive value of T2-weighted
imaging in specific clinical settings. For example it is
unknown if cardioprotective strategies specifically target-
ing edema would help as adjunctive therapies to
improve outcomes. Finally, as for all imaging techniques,
there is the need for randomized studies comparing
CMR-guided treatment decisions including edema ima-
ging versus standard treatment to better understand
how CMR and T2-weighted imaging can improve treat-
ment and outcome in patients with ACS.

Summary and Conclusions
Imaging myocardial edema with CMR in patients with
acute cardiac disease provides useful incremental infor-
mation on the acuity of myocardial injury, be it ischemic
or non-ischemic.
In institutions with rapid access to CMR, the assess-

ment of myocardial edema as an in vivo tissue marker
for acute myocardial injury also significantly improves
the clinician`s ability to stratify the risk in patients with
acute chest pain syndromes and triage them to appro-
priate treatment.
Comprehensive CMR scans also allows for obtaining

accurate information on LV function, size, morphology,
perfusion, and scarring during the same scan (typically
within 30 to 45 minutes), so has to be considered very
efficient. Importantly, in combination with scar imaging,
T2-weighted CMR of myocardial edema differentiates
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reversible from irreversible injury and can quantify myo-
cardial salvage after coronary revascularization, with
important implications for patient management and
prognosis. Furthermore, it provides a very powerful, safe
and cost-efficient endpoint for clinical trials on myocar-
dial revascularization.
In conclusion, T2-weighted CMR is a validated, unique

technique which should be considered as an essential
diagnostic tool as part of a comprehensive CMR scan.
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