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Magnetic resonance diffusion tensor imaging (DTI) provides a
powerful tool for mapping neural histoarchitecture in vivo. How-
ever, DTI can only resolve a single fiber orientation within each
imaging voxel due to the constraints of the tensor model. For
example, DTI cannot resolve fibers crossing, bending, or twist-
ing within an individual voxel. Intravoxel fiber crossing can be
resolved using q-space diffusion imaging, but q-space imaging
requires large pulsed field gradients and time-intensive sam-
pling. It is also possible to resolve intravoxel fiber crossing
using mixture model decomposition of the high angular resolu-
tion diffusion imaging (HARDI) signal, but mixture modeling
requires a model of the underlying diffusion process.

Recently, it has been shown that the HARDI signal can be
reconstructed model-independently using a spherical tomo-
graphic inversion called the Funk–Radon transform, also known
as the spherical Radon transform. The resulting imaging
method, termed q-ball imaging, can resolve multiple intravoxel
fiber orientations and does not require any assumptions on the
diffusion process such as Gaussianity or multi-Gaussianity. The
present paper reviews the theory of q-ball imaging and de-
scribes a simple linear matrix formulation for the q-ball recon-
struction based on spherical radial basis function interpolation.
Open aspects of the q-ball reconstruction algorithm are
discussed. Magn Reson Med 52:1358–1372, 2004. © 2004
Wiley-Liss, Inc.
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Magnetic resonance diffusion tensor imaging (DTI) maps
the orientational architecture of neural tissue by measur-
ing the water diffusion tensor within each voxel of the MR
image (1–3). The orientational architecture of the underly-
ing tissue can be inferred from the eigenstructure of the
diffusion tensor. For example, the major eigenvector of the
diffusion tensor gives the mean fiber direction within the
voxel, and the minor eigenvector indicates the sheet nor-
mal vector (4). In cerebral white matter, the anisotropy of
the diffusion tensor also provides a putative marker of
myelination degree and fiber density (5,6).

DTI has a significant limitation, however, in that the
technique can only resolve a single fiber direction within
each voxel (7,8). This shortcoming is significant since hu-
man cerebral white matter possesses considerable intra-
voxel structure at the millimeter resolution typical of MRI.
The tensor model is consequently deemed inadequate for

resolving neural architecture in regions with complex fiber
patterns.

The inability of DTI to resolve intravoxel orientational
heterogeneity has a number of consequences. This limita-
tion presents a significant obstacle for efforts to trace white
matter pathways from diffusion MRI (see Ref. (9) for re-
view). The fiber crossing confound also complicates inter-
pretation of diffusion anisotropy in regions of intravoxel
heterogeneity. In cerebral white matter, the anisotropy of
the diffusion tensor is typically expressed through the
fractional anisotropy (FA) metric. In voxels containing
intravoxel orientational heterogeneity, a decrease in the
FA of an individual fiber population may result in a par-
adoxical increase in the overall FA (4,10).

DTI’s inability to resolve intravoxel orientational heter-
ogeneity stems from the constraints of the tensor model,
which implicitly assumes a single Gaussian diffusion com-
partment within each voxel. The Gaussian function has
only a single directional maximum and therefore cannot
adequately describe diffusion functions with multiple
maxima. Multimodal diffusion may arise when the fiber
populations within a voxel possess different orientations
and the diffusion between the populations is in slow ex-
change (7,8,11).

The fiber crossing confound in DTI has prompted efforts
to develop diffusion imaging methods capable of resolving
intravoxel fiber crossing (7,8,12–17). Using q-space imag-
ing (QSI), investigators have measured the microscopic
diffusion function directly and have found that in regions
of fiber crossing the diffusion function possesses signifi-
cant multimodal structure (12,14,18). QSI employs the
Fourier relation between the diffusion signal and the dif-
fusion function to measure the diffusion function directly,
without recourse to a model of the diffusion process (19).
QSI is also referred to as diffusion spectrum imaging (DSI)
(12,14,18), diffusion displacement imaging, or dynamic
NMR microscopy (19).

QSI measures the diffusion function directly by sam-
pling the diffusion signal on a three-dimensional Cartesian
lattice. The QSI technique suffers from two practical weak-
nesses however. The technique requires gradient sampling
on a three-dimensional Cartesian lattice, which is time-
intensive. Further, QSI requires large pulsed field gradi-
ents to satisfy the Nyquist condition for diffusion in nerve
tissue.

To address the sampling burden of QSI, investigators
have proposed an alternative approach based on sampling
on a spherical shell (or combination of shells) in diffusion
wavevector space. The spherical sampling approach re-
ferred to as high angular resolution diffusion imaging
(HARDI) (8,11,15–17). In theory, the efficiency gain of
HARDI would stem from the need to sample only on a
spherical shell as opposed to the three-dimensional Carte-
sian volume required by QSI. By selecting a sampling shell
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of a particular radius the acquisition could also be targeted
toward specific lengthscales of interest.

Notwithstanding the potential advantages of HARDI,
widespread application of the technique has been limited
by the unavailability of a model-independent reconstruc-
tion scheme for HARDI data. Various models and numer-
ical fitting procedures have been proposed to relate the
spherical diffusion signal to the underlying diffusion func-
tion (7,8,15–17), but a model-free inversion has remained
elusive.

Recently, we described a completely model-free recon-
struction scheme for HARDI (12). The reconstruction is
based on a spherical tomographic inversion called the
Funk–Radon transform, also known as the spherical Ra-
don transform or simply the Funk transform. The resulting
method, called q-ball imaging (QBI), has a number of ben-
efits over previous HARDI reconstruction approaches in-
cluding model-independence, linearity in the signal, an
image resolution framework, and computational simplic-
ity. In the present paper we review the theoretical basis of
the QBI method, provide a simple linear matrix formula-
tion for the QBI reconstruction, and demonstrate the tech-
nique’s ability to resolve intravoxel white matter fiber
architecture.

THEORY

Background

In this section we review the theoretical relationship be-
tween the diffusion signal and the diffusion function. We
then describe the theory for inversion of the diffusion
signal using the Funk–Radon transform (FRT), which
forms the basis of the QBI method.

The diffusion function can be described generally by the
conditional diffusion probability density function P(x,x0).
The conditional probability density function describes the
probability for a spin to displace from position x0 to posi-
tion x in the experimental diffusion time � (19–21). The
conditional probability density function is referred to in
other contexts as the diffusion Green’s function, the diffu-
sion propagator, or the diffusion van-Hove self-correlation
function.

In MR, the observed signal is generated from an average
over all spins in the voxel. The resulting ensemble-average
is written P(r) � �P(x,x0)�(x0) dx0, where r � x � x0 is the
relative spin displacement and �(x0) is the initial spin
density (19,21). With some abuse of nomenclature, we will
refer to the ensemble average of the conditional probability
density function as simply the probability density func-
tion (PDF) or diffusion function and denote it P(r). In the
notation that follows, the diffusion function P(r) therefore
denotes the ensemble-average probability for a spin to
undergo a relative displacement r in the experimental
diffusion time �.

The diffusion PDF P(r) is related to the measured MR
diffusion signal by the Fourier relationship,

P�r�� ��E�q�	,

where � denotes the Fourier transform with respect to the
diffusion wavevector q (19–22). The diffusion wavevector

is defined as q � (2
)-1��g, where � is the gyromagnetic
ratio for the nucleus of interest, � is the diffusion gradient
duration, and g is the diffusion gradient vector. The diffu-
sion wavevector q is the reciprocal vector to the relative
spin displacement vector r.

The Fourier relation between the diffusion function and
MR diffusion signal enables direct reconstruction of the
diffusion function by Fourier transformation of a three-
dimensional lattice sampling of q-space. Reconstruction of
the diffusion PDF by Fourier transform of the diffusion
signal forms the basis of the QSI method (19). QSI has been
employed to measure the diffusion PDF in nonbiological
materials with complex microstructure (19,23), as well as
small animals in vivo (14,24–26). QSI has also been ap-
plied in humans to map the one-dimensional (27,28) and
three-dimensional PDF (12,18).

In in vivo applications, reconstructing the diffusion PDF
using the complex Fourier transform is not feasible since
the phase of the signal is corrupted by biological motion,
primarily due to cardiac pulsation. Instead, the diffusion
function can be reconstructed using the modulus Fourier
transform P(r) � �[�E(q)�]. Using the modulus FT as op-
posed to the full complex FT does not sacrifice any infor-
mation since the diffusion signal is real and positive. The
reality and positivity of the diffusion signal entails that the
modulus FT and complex FT of the diffusion signal are
equivalent. The reality of the diffusion signal follows from
the symmetry of the diffusion propagator, and the positiv-
ity, which is not trivial, is a consequence of the positive
definiteness of the diffusion propagator (18).

It should be noted that Fourier transformation of the
diffusion signal only gives the diffusion PDF exactly when
there is no appreciable diffusion during the diffusing en-
coding period. This condition requires that the diffusion
mixing length associated with the diffusion encoding time
is smaller than a characteristic diffusion restriction size of
the material. The requirement for short diffusion pulses is
referred to as the “narrow-pulse condition” (29). It has
been shown that when the pulse duration is finite the
resulting PDF can be described as a center-of-mass propa-
gator, which is a spatially contracted form of the true PDF
(29).

While the three-dimensional PDF provides invaluable
information on the tissue microstructure, for the purposes
of mapping the orientational architecture of tissue the
primary object of interest is the orientational structure of
the diffusion function. The orientational structure of the
diffusion function can be described through the diffusion
orientation distribution function (ODF). The diffusion
ODF (u) is defined as the radial projection of the diffusion
function,

�u��
1
Z �

0

�

P�ru�dr, [1]

where Z is a dimensionless normalization constant. The
ODF framework is widely used in materials science to
describe the orientational composition of polymers, liquid
crystals, and grain composites (30,31).

The normalization constant in Eq. [1] ensures that the
ODF is properly normalized to unit mass. Even though the
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PDF is normalized, the ODF obtained by radial projection
is not guaranteed to be normalized since the ODF is a
distribution on the radial projections and not on the true
sphere. To define the ODF over the proper sphere would
require an integral over solid angle elements.

Using Eq. [1] we can derive the ODF for Gaussian diffu-
sion. The PDF for anisotropic Gaussian diffusion is

P�r�� �4
���3/2�D��1/2exp��rTD�1r/�4���,

where �.� is the determinant. Integrating over radius as
described by Eq. [1] gives the ODF,

�u��
1
Z � 
�

uTD�1u
, [2]

where Z is a normalization constant.
The ODF can be derived from the diffusion PDF mea-

sured by QSI. Deriving the ODF from QSI has a number of
limitations, however. Extracting the ODF from the PDF
requires explicitly calculating the radial projection. The
mapping between Cartesian and spherical coordinates sys-
tems may introduce Cartesian artifacts in the ODF. Carte-
sian coloration of the ODF may be a particular problem at
the coarse Cartesian resolution typically used for QSI.
Further, the radial projection is highly inefficient since the
projection discards a considerable fraction of the acquired
data. The efficiency of QSI is also hampered by the strong
pulsed field gradients needed to satisfy the Nyquist con-
dition for the diffusion PDF in cerebral white matter.

It is substantially more efficient to measure the diffusion
ODF by directly sampling the diffusion signal on a spher-
ical shell in diffusion reciprocal space. This approach
forms the basis of QBI (12). Reconstructing the ODF di-
rectly using spherical sampling and reconstruction has a
number of advantages. First, both the sampling and the
reconstruction are both performed on the sphere so the
reconstruction is immune to Cartesian reconstruction bias.
With a spherical sampling scheme, there is also a natural
framework for calculating the angular resolution, whereas
it is not clear how to define the angular resolution for a
Cartesian scheme. Last, the acquisition can be targeted to
specific spatial frequency bands of interest by specifying
the radius of the sampling shell. In the next section we
review the theory underlying the QBI reconstruction.

Reconstruction

The QBI reconstruction is based on the FRT, also known
as the spherical Radon transform or simply the Funk trans-
form (32). The FRT is an extension of the planar Radon
transform to the sphere. The FRT is a transform from the
sphere to the sphere. Given a function on the sphere f(w),
where w is a unit direction vector, the FRT is defined as
the sum over the corresponding equator, i.e., the set of
points perpendicular to w. The FRT � for a direction u can
be written

��f�w�	�u���
w�u�

f�w�dw

� � f�w���wTu�dw,

where � is the Dirac delta function.
While the original FRT is defined as a transform from the

sphere to the sphere, here we extend the definition of the
FRT to map from three-dimensional Cartesian space to the
sphere. The extended FRT is defined as the FRT evaluated
at a particular radius r�. Given a three-dimensional func-
tion f(x), where x is a three-dimensional vector, the FRT at
a particular radius r� is written

��f�x�	�u, r���� f�x���xTu����x� � r��dx.

For notational simplicity we denote the above transform as
simply �r�. In general, we also denote transforms F[f(x)](y)
as simply F[f(x)] where the final argument is implied.

Recently, we have shown that the FRT of the diffusion
signal gives a strong approximation to the ODF, that is,

�u��
1
Z

�q��E�q�	, [3]

where q� is the radius of the sampling shell and Z is a
normalization constant (12). This remarkable relationship
entails that the sum of the diffusion signal over an equator
approximately gives the diffusion probability in the direc-
tion normal to the plane of the equator. Consequently, to
estimate the diffusion probability in a particular direction
all that is needed is to sum the diffusion signal along the
equator around that direction. This provides a model-free
approach for estimating the diffusion probability from the
spherically sampled diffusion signal (12).

We note that FRT of the diffusion signal has been de-
scribed previously by Zavada and colleagues in the con-
text of isotropic diffusion (33). We also note that the FRT
bears a strong resemblance to the infinite anisotropy inver-
sion model described by Behrens et al. (13). The latter has
an additional constant term for the spherical fit. It may be
possible to show that the two inversions are equivalent.

Equation [3] represents an approximation. The exact
relationship between the ODF and the FRT can be written
as follows. We write the PDF in cylindrical coordinates as
P(r,�,z). Without loss of generality, we take the z-axis to be
along the direction of interest u. In Appendix A we prove
that the ODF and the FRT of the diffusion signal are related
according to

�u�� �q��E�q�	

� 2
q� � P�r, �, z�J0�2
q�r�rdr d� dz, [4]

where J0 is the zeroth-order Bessel function (12). This
relationship states that the FRT of the diffusion signal
gives the radial projection of the PDF, except that instead
of the projection being along an infinitely thin line the
projection is along a Bessel beam with a width defined by
the width of the zeroth-order Bessel function (Fig. 1). The
Bessel beam projection resembles the true radial projec-
tion to the extent that the mass of the zeroth-order Bessel
function is concentrated at the origin.
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Equation [3] can be written in a simpler form by recalling
the Hankel transform �[ f(r,�,z)] � � f(r,�,z)J0(2
kr)rdr
and the X-ray transform (also known as the planar Radon
transform) X[f(r,�,z)] � � f(r,�,z) dz. We then have

�u�� �q��E�q�	� 2
q� � ��X�P		d�.

The above relation states that the FRT of the diffusion
signal is proportional to the Hankel transform of the X-ray
transform of the diffusion function. Note that the X-ray

transform evaluated at the origin is equivalent to the radial
projection described by Eq. [1]. (It is important to note that
the 2
q� term in Eq. [3] arises from the circle integral and
so is equal to unity if the great circle sampling density is
independent of the sampling wavevector q�).

To understand Eq. [4] it is helpful to consider the inte-
gral in parts. The X-ray transform projects the diffusion
function onto r�-plane, which is the tangent plane to the
direction of interest z. Evaluating the X-ray transform at
the origin r � 0 would give the radial projection exactly.
Instead, the X-ray projection is multiplied by J0 through
the Hankel transform. The integral over the plane dr and

FIG. 1. Schematic illustration of the relationship
between the Funk–Radon transform and the
Bessel beam projection. The q-space sampling
scheme is indicated by the blue spherical lattice.
The white arrow gives the direction of interest.
The light blue circle indicates the equator around
the direction of interest. Integration of the
q-space signal along the equator defines a pro-
jection beam, which is shown by the dot pattern.
The projection beam (i.e., Bessel beam) falls off in
intensity according to the zeroth-order Bessel
function. The intensity of the Bessel beam is in-
dicated by the density of the green and yellow
dots. The green dots indicate the positive signal
contribution and the yellow dots the negative
contribution.

FIG. 2. Reconstruction of the diffusion ODF from the diffusion signal using the FRT. The diffusion data are taken from a single voxel from the
data set described under Methods. The sampling and reconstruction schemes are also described under Methods. (a) Diffusion signal sampled
on fivefold tessellated icosahedron (m � 252). The signal intensity is indicated by the size and color (white � yellow � red) of the dots on the
sphere. (b) Regridding of diffusion signal onto set of equators around vertices of fivefold tessellated dodecahedron (k � n � 48 � 755 � 36240
points). (c) Diffusion ODF calculated using FRT. (d) Color-coded spherical polar plot rendering of ODF. (e) Min–max normalized ODF.
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d� then sums the weighted signal in the plane. To the
extent that J0 is concentrated near the origin r � 0, Eq. [4]
gives the true ODF. For example, for illustrative purposes,
if we take J0(r) � �(r) then we obtain the true radial pro-
jection. The main consequence of Eq. [4] is that to estimate
the diffusion probability in a particular direction we sim-
ply need to add the diffusion signal along the equator
around that direction. Appendix A provides a detailed
derivation of Eq. [4].

Implementing the FRT in practice requires a numerical
procedure for calculating the equator integral. Since the
equator points will not coincide with the diffusion
wavevector sampling points it is necessary to regrid the
diffusion data onto the equatorial circles. The regridding
can be implemented using a form of spherical interpola-
tion called spherical radial basis function (sRBF) interpo-
lation, which we describe in the following section (34).

Algorithm

In this section we describe a simple matrix implementa-
tion of the FRT. We ultimately derive a matrix relationship
of the form � � (1/Z) Ae where the reconstruction matrix
A implements the FRT. The following describes how to
derive the FRT reconstruction matrix A and the normal-
ization constant Z.

The diffusion signal for a diffusion wavevector q is
denoted E(q). We are given a set of m diffusion measure-
ments, which we denote by the signal vector e � [E(q1)
E(q2) . . . E(qm)]T. The measurements were acquired with
the m diffusion wavevectors {q} � {q1, q2, . . . , qm}. The
diffusion wavevectors are also written as the 3 � m col-
umn matrix Q � [q1 q2. . . qm]. For notational simplicity,
the diffusion wavevectors are normalized to unit length,
i.e., qi 4 qi/q.

We specify a set of n diffusion directions of interest
{u} � {u1, u2, . . . , un} onto which we wish to reconstruct
the ODF. The reconstruction directions are also denoted
by the 3 � n column matrix U � [u1 u2. . . un]. We wish to
reconstruct the ODF vector � � [(u1) (u2) . . . (un)]T

using the FRT.
To compute the FRT we need to specify the equator of

points for each reconstruction direction ui. The points
comprising each equator can be specified as follows. We
construct a circle of k equally spaced points in the xy-
plane. The points are denoted by the 3 � k matrix C � [cos
� sin � 0k]T where � � (2
/k)[1 2 . . . k]T and 0k is a k �
1 vector of zeros. For each ui, we then rotate the circle so
that the normal to the circle-plane points in the direction
ui. The rotation matrix is the matrix which rotates z into ui,
which is given by

Rz�ui��
�z � ui��z � ui�

T

�zTui � 1�
� I.

The equator points for a ui can then be written as Rz(ui)C.
We would like to represent all of the equator points for all
of the reconstruction directions as a single matrix. To do so
we form the 3 � (kn) matrix S � �i�1

n Rz(ui)C � [Rz(u1)C
Rz(u2)C. . . Rz(un)C] where � is the matrix concatenation
operator.

The points on the equator do not correspond to sampling
points so it is necessary to interpolate the data. We per-
form the interpolation by regridding the original sampling
scheme onto the set of equators. The regridding is imple-
mented using sRBF interpolation (34). The main idea of
sRBF interpolation is to fit the signal with a linear combi-
nation of positive definite kernels on the sphere (35) and
then use the kernel fit to evaluate the function at the
interpolation points.

In order to implement the sRBF interpolation it is nec-
essary to specify a basis function and a distance metric on
the sphere. The distance metric d is taken to be the mini-
mum angle between the direction vectors, i.e., d(n1,n2) �
cos-1 �n1

Tn2� where n1 and n2 are unit direction vectors,
and �.� denotes the absolute value. For the interpolation
kernel we choose the spherical Gaussian �(�) � exp(��2/
�2)where � � d(n1,n2) and � is a width parameter. Other
common basis functions for sRBF interpolation include
the inverse multiquadric function �(�) � (�2 � �2)�1/2,
thin-plate spline �(�) � �2�log(�), and the ultraspherical
(Gegenbauer) polynomial �(�) � Cn

�(�) (34). Independent
of sRBF interpolation, some other common basis functions
for the ODF include the spherical harmonics (30) and the
Wigner polynomials (36).

In sRBF interpolation the interpolation kernel width �
controls the tradeoff between the accuracy and the stabil-
ity of the spherical interpolation; a small width will pro-
vide high accuracy but low stability and reciprocally for a
large width. The accuracy–stability tradeoff is specified by
the condition number of the interpolation matrix H, so that
the optimal tradeoff is achieved when the condition num-
ber is minimal (37). The optimal kernel width can be
derived numerically knowing only the wavevector sam-
pling scheme. It should also be possible to derive an ana-
lytical expression for the optimal kernel width (in a least
upper-bounded sense) based on existing analytical upper
bounds on the condition number of the spherical interpo-
lation matrix (37).

The kernels are centered on a set of p specified unit
vectors {v} � {v1, v2, . . . , vp}, which can be taken to be the
sampling directions, the reconstruction points, or any
other set of unit vectors. The basis function centers are also
denoted by the 3 � p column matrix V � [v1 v2. . . vp]. The
diffusion signal can then be expressed as a convolution of
the spherical basis functions, e � Hw, where w is the
coefficient vector and H is the m � p convolution matrix H
� [Hij] � [�(d(qi, vj))] � �(cos-1 �QTV� ). From the mea-
sured signal e we can estimate the weight vector as ŵ �
H�e where H� � (HTH)-1HT is the Moore–Penrose pseudo-
inverse of H. If the noise is independent and identically
distributed (iid) additive Gaussian noise, then noise regu-
larization can be implemented using the noise-regularized
pseudoinverse H� � (HT�-1H)-1HT�-1 where � is the noise
covariance matrix for the signal vector e.

The diffusion signal estimate for the equator points is
given by Gw where G � [Gij] � [�(d(si, vj))] �
�(cos�1�STV�) is the (kn) � p convolution matrix from the
basis function centers to the equator points. Here, si and vj

are the column vectors of S and V, respectively. Equating
w and ŵ and substituting gives the (kn) � m matrix GH�.
To compute the sum over the equators, we define the
summation matrix � � (In R 1k

T) where R is the matrix
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direct product, In is the n � n identity matrix, and 1k is a
k � 1 vector of ones. The summation matrix can be written
explicitly as

� � �
1k

T 0
1k

T

· · ·
0 1k

T
�.

The operation of � is to sum independently over each
equator.

The ODF is then given by the summation over the equa-
tors � � (1/Z) �GH�e, or more simply � � (1/Z) Ae,
where we have defined A � �GH� and Z � 1n

TAe. The
normalization constant Z ensures that the ODF, as a prob-
ability density, properly normalizes to unit mass. Table 1
summarizes the QBI reconstruction algorithm.

Figure 2 shows the reconstruction steps for an individ-
ual ODF. Note that the equatorial regridding (Fig. 2b) is not
actually computed as part of the FRT reconstruction but is
shown for illustrative purposes. The FRT reconstruction
directly estimates the great circle integral without estimat-
ing the values on the great circle.

We note that the FRT reconstruction matrix A can be
approximated using the simple relation A � �(cos-1 �UTQ� ).
We term this approximation the “soft equator” approxima-
tion. The reconstruction matrix for the soft equator ap-
proximation has the advantage of being considerably sim-
pler to build than the full sRBF construction. The relation-

ship between the soft equator approximation and the sRBF
framework merits further investigation.

Depending on the application it can be helpful to
smooth the reconstructed ODF. The ODF can be smoothed
using a spherical convolution matrix. The choice of
smoothing width should be motivated by the objectives of
the particular study. For example, the kernel width can be
selected to achieve a particular statistical distribution for
the ODF; to improve orientational registration between
subjects for group comparisons; or to facilitate visualiza-
tion.

Resolution

The resolution of the QBI experiment is defined as the
width of the Bessel beam. Since the resolution is defined
in terms of the width of the Bessel beam, the resolution has
dimensions length and not angle. According to the Ray-
leigh resolution criterion (38), the spatial resolution of the
Bessel beam is defined as radial distance to the first cross-
ing of the Bessel function. This gives a resolution �r �
�0/(2
q�) � 0.383/q� where �0 � 2.405 is the first zero
crossing of J0, i.e., J0(�0) � 0.

The reciprocal relationship between the mass and the
sharpness of the Bessel beam defines the tradeoff between
signal-to-noise and angular resolution in QBI. For large q�
the signal will be low, but the beam will be narrow and
consequently the resolution will be high. Reciprocally, for
small q� the signal will be high, but the beam will be wide
and so the resolution will be low.

Postprocessing

Resolving intravoxel fiber crossing with QBI requires
higher diffusion weighting than is typically employed in
DTI. The high diffusion weighting raises a number of post-
processing considerations, which are not factors in DTI. In
particular, the individual diffusion-weighted images have
negligible anatomic contrast so that it is impossible to
perform any intensity-based image correction such as
Eddy-current correction, motion correction, or cardiac-
pulsation artifact rejection. Motion correction is a partic-
ular concern given the long acquisition times required for
QBI.

To generate sufficient contrast to perform motion correc-
tion and Eddy-current correction it should be possible to
average the data in blocks and then perform the correction
procedure on the averaged blocks. For example, the diffu-
sion data could be averaged in blocks of n images, and then
the motion correction and Eddy-current correction could
then be performed on the averaged blocks. The blocking
approach would require that the diffusion directions are
sampled in proximal order.

Motion correction could also be implemented by acquir-
ing T2 images interspersed with the diffusion images. Mo-
tion correction could be performed on the T2 images and
the motion correction transform could then be applied to
the intermediate diffusion-weighted images. The fre-
quency of the T2 acquisitions would control the robustness
to large motions.

The inability to detect images corrupted by cardiac pul-
sation argues for the need for cardiac gating in high b-value

Table 1
Summary of QBI Reconstruction Algorithm

Input
e : m � 1 diffusion signal vector
Q : 3 � m column matrix of diffusion sampling wavevectors
U : 3 � n column matrix of reconstruction points
V : 3 � p column matrix of basis function centersa

k : Number of points on the equatorb

�� : Spherical radial basis function
Output

� : n � 1 diffusion ODF vector
Algorithm

H � �(cos�1�QTV�) : Construct m � p convolution matrix
� � (2�/k) [1 2 . . . k]T : Construct k � 1 vector of angles
C � [cos � sin � 0k]

T : Construct 3 � k matrix of equator points
in the xy-plane
S � �i�1

n Rz(ui)C : Construct 3 � (kn) matrix of equator points
for all points
G � �(cos�1�STV�) : Construct (kn) � p convolution matrix
A � (In R 1k

T)GH� : Form reconstruction matrix by summing
over equator dimensionc

Z � 1n
TAe : Calculate normalization constant

� � (1/Z) Ae : Compute ODF
aThe basis function centers can be taken to be the reconstruction
points, i.e., V � U.
bThe number of equator points k can be selected so that A con-
verges within a specified numerical accuracy, i.e., �A(k � 1) � A(k)�
� numerical precision.
cIt is not advised to actually form the summation matrix (In R 1k

T).
Rather, the summation should be implemented by repartitioning the
(kn) � m matrix GH� into a k � n � m array and then summing over
the first dimension.
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diffusion imaging. The effect of the variable TR on the QBI
reconstruction at low SNR would need to be investigated.
It should be noted that none of the above procedures was
used in the present study but will be investigated in future
work.

Visualization

Visualization of ODF fields presents a number of chal-
lenges. The ODF can be visualized directly as a spherical
polar plot r(u) � (u). The diffusion peaks of the ODF are
typically small though relative to the baseline (Fig. 2d) and
so direct visualization of the ODF will show little orienta-
tional structure. To emphasize the orientational structure
of the ODF, it is helpful to min–max normalize the ODF,
i.e., subtract the baseline and rescale (Fig. 2e). By subtract-
ing off the baseline term, however, the min–max normal-
ization scales the noise nonlinearly potentially causing
isotropic diffusion to appear anisotropic. For example, in
the case of free diffusion with noise, the min–max normal-
ization will produce noise peaks with high apparent an-
isotropy.

Rescaling the min–max normalized ODF by an anisot-
ropy measure, e.g., the generalized fractional anisotropy
(GFA) metric (Appendix B), resolves this confound by
reintroducing the anisotropy information. The final spher-
ical polar plot representation (Fig. 2c) is then

r�u�� GFA��
�u�� min �u�

max �u�� min �u�
. [5]

Despite the ability of the anisotropy recalling to suppress
the noise amplification, care should still be taken in inter-
preting diffusion peaks in regions of low anisotropy. We
note that this choice of scaling is ad hoc and further
visualization schemes should be explored.

METHODS
Data Acquisition

High angular resolution diffusion imaging data were col-
lected on a normal human volunteer on a 3-T Siemens Trio

using an eight-channel phased array coil. The data were
collected at the Martinos Center for Biomedical Imaging
using a protocol approved by the Massachusetts General
Hospital Internal Review Board. The diffusion preparation
used a twice-refocused balanced echo sequence 90–g1–
180–g2–g3–180–g4–acq where the 180 pulse-pair was po-
sitioned to minimized Eddy-current-induced image distor-
tions (39). Thirty slices were acquired along the axial
plane. The field of view was 282 � 282 mm and the matrix
size was 128 � 128 to give 2.2 � 2.2 mm in-plane resolu-
tion. The slice thickness was 2.2 mm.

The sequence parameters were TR/TE � 6400/120 msec,
b � 4000 sec/mm2, gmax � 25 mT/m, geffective � 22.2
mT/m, � � 55 msec, q � 525 cm�1. This gives a spatial
resolution (Rayleigh definition) �r � 7.28 �m. The diffu-
sion gradient sampling scheme consisted of m � 252 di-
rections, which were obtained from the vertices of a five-
fold regularly tessellated icosahedron (icosa5) projected
onto the sphere. One T2 image with no diffusion weighting
was also obtained for a total of 253 acquisitions. The total
acquisition time was 26�59�. The SNR of the T2 image was
11. The mean SNR of the diffusion-weighted images was
2.5 � 0.2 where the SD was computed over the diffusion
directions.

Reconstruction

For each voxel the diffusion ODF was reconstructed using
the matrix FRT described under Theory, Algorithm. The
sRBF interpolation was implemented using a spherical
Gaussian kernel with � � 5°. The n � 755 reconstruction
points were taken from the vertices of a fivefold regularly
tessellated dodecahedron (dodeca5) projected onto the
sphere. The basis function centers were taken as the same
set of points. Each ODF was then smoothed using a spher-
ical Gaussian kernel with � � 3°. The number of equator
sampling points was set at k � 48.

The width of the Gaussian kernel (� � 5°) was selected
by numerically solving for the � which minimized the
condition number of the interpolation matrix (Fig. 3). The
condition number exhibited a broad minimum from � �

FIG. 3. Log condition number of the interpolation
matrix H as a function of the kernel width �.
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5–15°. The optimal � was selected as the minimal value in
this interval, � � 5°. The width of the smoothing kernel
(� � 3°) was chosen by visual inspection of the min–max
normalized ODFs in the genu of the corpus callosum and
the crossings in prefrontal cortex. The width was selected
with the goal of reducing sharp peaks in unimodal ODFs
but not fusing peaks from multimodal ODFs.

Simulation

To assess the influence of the interpolation kernel width
and the smoothing kernel width on the QBALL reconstruc-
tion we performed a numerical simulation of a two-com-
partment Gaussian system. The diffusion model consisted
of two Gaussians in slow exchange. The volume fractions
of the two compartments were f1 � 0.6 and f2 � 0.4. Each
tensor had the same diffusion eigenvalues � �
(1.7,0.3,0.3)�m2/msec. The principal eigenvectors were
separated by 45°. The diffusion signal was sampled using
the experimental parameters described above. The signal
was sampled over n � 100 trials with Rician noise added
to give SNR � 10 in the non-diffusion-attenuated signal.
The true ODF was computed by analytical integration of
the FRT.

The QBALL reconstruction was computed using a range
of interpolation kernel widths �(interp) � {3,5,15,25}° and
smoothing kernel widths �(smooth) � {1,3,15,25}°. The

reconstruction error between the estimated ̂ and true ODF
 was evaluated using two metrics: the mean angular dif-
ference between the maximum diffusion peak of the esti-
mated and true ODFs; and the Kullback–Leibler (KL) di-
vergence between the estimated and true ODFs. The angu-
lar difference metric was defined as � � cos�1�(û*)T u*�
where û* � arg maxu ̂(u) and u* � arg maxu (u). The KL
divergence was defined as KL � ¥i (ui)log((ui)/̂(ui)).

Figure 4 shows the effect of the interpolation kernel
width and the smoothing kernel width on the ODF recon-
struction for the simulated data. The angular difference
metric is seen to decrease and then increase with increas-
ing interpolation kernel width, which is consistent with
the performance predicted by the condition number crite-
rion (Fig. 3). Both the angular difference metric and the KL
metric tended to decrease and then increase with increas-
ing smoothing kernel width. The nonmonotonic behavior
is due to the suppression of noise peaks at low smoothing
levels and the fusion of true diffusion peaks at high
smoothing levels.

RESULTS

General

Figure 5 shows the raw diffusion data for an individual
slice and for a subset of the total number of diffusion

FIG. 4. Effect of smoothing and interpolation kernel widths on estimated ODF for a synthetic two-Gaussian system. The subplots show
the estimated ODF ̂ for an individual trial. The reconstruction was computed using the specified interpolation kernel width �(interp) (rows)
and smoothing kernel width �(smooth) (columns). The error metrics below each ODF are the angular difference (top) and the KL divergence
(bottom) between the true and estimated ODFs. The SD is the SD over trials. Note how the geometry of the reconstructed ODF is relatively
constant for �(interp) � {5,15,25}° for all levels of smoothing.
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sampling directions. Anatomic contrast can only be seen
in highly anisotropic structures such as the splenium of
the corpus callosum. Figure 6 shows GFA and RGB maps
for nine contiguous slices.

Optic Radiation

Figure 7 shows an ODF map of the optic radiation. The
intersection among the optic radiation, the callosal sple-
nium fibers, and the tapetum can be seen in the magnified
inset (Fig. 7). The tapetum is a small group of association
fibers medial to the optic radiation and lateral to the pos-
terior horn of the lateral ventricle. The tapetum contains
temporal–occipital association fibers (40), which run su-
perior–inferiorly at the level of the splenium of the corpus
callosum. The arcuate fasciculus can be seen on the lateral
side of the optic radiation. The arcuate fasciculus origi-
nates from ventrolateral temporal gyri and the parietal and
occipital lobes, sweeps superior and rostral around the
insula, and inserts into the superior and middle frontal
gyri.

The optic radiation fibers can be seen to diverge around
the occipital sulcus to the middle and superior occipital
gyri. At the cortical margin of the occipital sulcus intra-
voxel fiber crossings (green and red ODFs) are observed
arising from the crossing between the anterior–posterior
(green) directed fibers of the optic radiation and the medi-
al–lateral (red) directed U-fibers connecting the middle
and superior occipital gyri.

Meyer’s Loop

Figure 8 shows an ODF map of the optic radiation in-
cluding Meyer’s loop. The optic radiation can be seen to
originate in the lateral geniculate nucleus, arc over the
inferior horn of the lateral ventricle, and travel medially
to the arcuate fasciculus to insert into primary visual
cortex. In Meyer’s loop individual ODFs are observed
with both anterior–posterior (green) and medial–lateral
(red) directed peaks. The ability of a rapidly bending fi-
ber population to generate ODFs with multiple
peaks suggests that fiber crossing is not a prerequisite
for multimodal ODFs. Rather, it may be possible for a
single bending fiber population to generate multimodal
ODFs.

The map also shows the intersection of the optic radia-
tion and the uncinate fasciculus. The uncinate fasciculus
connects the frontal lobe and the anterior temporal lobe.
At the level of middle temporal lobe, the fibers of the
uncinate fasciculus (blue) are joined by the anterior branch
of the superior longitudinal fasciculus fibers (blue). In the
middle temporal gyrus we see the lateral projections (red)
to the gyral crown as well as anterior–posterior directed
fibers (green) joining the middle temporal and superior
temporal gyri.

Middle Temporal Gyrus

The architecture of middle temporal gyrus is shown
in detail in Fig. 9. Within the gyrus we see the lateral-

FIG. 5. Raw diffusion data for single slice
and a subset of the total number of diffu-
sion-weighted directions (42 of 252 diffu-
sion directions). The images are arranged
according to the corresponding sampling
direction.
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directed (red) projections along the gyral axis as well
as fibers oriented anterior–posteriorly (green) per-
pendicular to the gyral axis. The anterior–posterior
directed fibers may be the fiber component which in-

serts into the gyral wall or may be association fibers
from superior temporal gyrus passing adjacent to the
middle temporal gyrus on the way to the arcuate fascic-
ulus.

FIG. 6. GFA and RGB images for nine slices. The slices are ordered inferior to superior in going from left to right and top to bottom. The
RGB images are color-coded according to (red,green,blue)T � GFA � �u*� where u* is the peak ODF direction, i.e., u* � arg maxu(u). Red
corresponds to medial–lateral, green anterior–posterior, and blue superior–inferior.

FIG. 7. ODF map of the intersection between the
optic radiation and the splenium of the corpus
callosum. The ODFs are rendered according to the
scheme described in Theory, Visualization. The
magnified view at right shows the crossing be-
tween splenium of the corpus callosum, the tape-
tum, and the optic radiation. af, arcuate fasciculus;
mog, middle occipital gyrus; or, optic radiation; os,
occipital sulcus; scc, splenium of the corpus cal-
losum; sog, superior occipital gyrus; ta, tapetum.
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Midbrain
Figure 10 shows an ODF map of the caudal midbrain.
The ODF map shows the decussation of the superior
cerebellar peduncle (green turning into red) crossing the
reticulospinal tract (blue), which runs superior–inferior.
We also see the frontopotine fibers (green), which con-
nect motor cortex and the pons, projecting anterior–
posteriorly.

Prefrontal Cortex

The prefrontal cortical network is characterized by a com-
plex interdigitation of thalamocortical and callosal projec-
tions (Fig. 11). Thalamocortical projections from the me-
diodorsal nucleus pass through the anterior limb of the
internal capsule and diverge to insert into prefrontal cor-
tex. The thalamocortical projections intersect callosal
genu fibers, the superior longitudinal fasciculus, and fron-

tal association fibers. Multimodal ODFs are observed at the
point where the thalamocortical projections diverge into
the frontal gyri and where the projections intersect the
callosal genu fibers.

Effect of Normalization

Figure 12 shows the effect of the various normalization
steps (see Background, Visualization) on the rendered QBI
(Fig. 12, top row) and DTI (Fig. 12, bottom row) ODF maps.
In CSF, the unscaled ODFs obtained by QBI (Fig. 12a) are
isotropic but the min–max normalized ODFs (Fig. 12b)
exhibit artificial diffusion peaks due to the rescaling. It is
important to note that the artificial peaks are not a result of
anisotropy in the QBALL reconstruction, but are rather
due to the nonlinear scaling of the noise peaks caused by
the min–max normalization. Rescaling by GFA (Fig. 12c)
suppresses the noise peaks in CSF yet retains the fiber

FIG. 8. ODF map of optic radiation and uncinate
fasciculus. ac, anterior commisure.;lgn, lateral
geniculate nucleus. The magnified view at right
shows the apparent fiber crossing structure in
Meyer’s loop. ml, Meyer’s loop; mtg, middle tem-
poral gyrus; or, optic radiation; phg, parahip-
pocampal gyrus; uf, uncinate fasciculus.

FIG. 9. ODF map of middle temporal gyrus, mtg,
middle temporal gyrus; or, optic radiation; uf, un-
cinate fasciculus.
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crossing contrast. For example, in the GFA-scaled, min–
max normalized ODF map (Fig. 12c) fiber crossing can be
seen at the crossing between the genu of the corpus callo-
sum and anterior cingulate gyrus (white arrow) and at the
bifurcation of the callosal genu fibers (white arrow).

Comparing Figs. 12c and 12e we see that QBI and DTI
give similar ODF estimates in the core of the genu of the
callosum. Note that the DTI and QBI ODFs will not be
identical though, even for Gaussian diffusion because the

QBI ODF contains the Bessel term whereas the DTI ODF
does not.

DISCUSSION

We have described a simple linear reconstruction scheme
for QBI and shown that the technique can resolve intra-
voxel fiber crossing both in deep white matter pathways
and at the subcortical margin. Relative to DTI, the QBI

FIG. 10. ODF map of caudal midbrain. cp, cere-
bral peduncle; ctt, central tegmental tract; fp, fron-
topontine tract; rst, reticulospinal tract; scp, supe-
rior cerebellar peduncle; sn, substantia nigra; xscp,
crossing of the superior cerebellar peduncle.

FIG. 11. ODF map of prefrontal cortex. acg, an-
terior cingular gyrus; gcc, genu of the corpus cal-
losum; ic, internal capsule; ifg, inferior frontal gy-
rus; ec, external capsule; mfg; middle frontal gyrus;
sfg, superior frontal gyrus.
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reconstruction has a number of advantages including lin-
earity in the signal, model-independence, and the ability
to resolve intravoxel orientational heterogeneity.

In regions containing intravoxel fiber curvature, such as
Meyer’s loop (Fig. 8), the reconstructed ODF may exhibit
multiple peaks due the different directional components
of the curving fiber bundle. In contrast, DTI would give a
single diffusion peak, which arguably provides a more
accurate representation of the number of fiber populations
present. The ability of curving fibers to generate multimo-
dal ODFs is a limitation of the ODF representation, which
can describe multimodal diffusion but cannot resolve the
continuity of an individual fiber orientation within a
voxel. Care should therefore be taken in necessarily ascrib-
ing multimodal diffusion to fiber crossing as both crossing
and bending fibers can give rise to multimodal diffusion.
In particular, tractography algorithms, which do not con-
sider the entire structure of the ODF but only the local
diffusion peak, will be confounded by intravoxel fiber
curvature.

It may be possible to differentiate bending from cross-
ing fibers based on differences in the diffusion profiles
for the two configurations. Toward that end, future re-
search will investigate the effect of the diffusion
wavevector and diffusion mixing and encoding times on
the structure of the diffusion ODF in crossing and bend-
ing fiber populations.

APPENDIX A

Proof of the FRT–ODF Relationship

In Ref. (12). we provided a proof of the FRT–ODF relation-
ship (Eq. [4]) using Plancheral’s theorem and the central
slice theorem. In this Appendix we derive a separate proof
of the FRT–ODF relationship based on a cylindrical wave
expansion.

Using cylindrical coordinates, the real space (diffusion
space) vector is written as r � (r,�,z) and the Fourier space
(diffusion signal space) vector is written q � (q, ,!). With-
out loss of generality we take the direction of interest u to
be the z-axis. The radial projection (Eqn. 1) can then be
written as

p�r, �� � �
��

��

P�r, �, z�dz.

The FRT of E at wavevector q� is defined as the great circle
integral

�q��E	 � � E�q�,  , 0�d 

� � E�q,  , !���q� � q���!�q dq d d!.

FIG. 12. Effect of normalization on QBI (top row) and DTI (bottom row) ODF maps. The ROI is taken from the genu of the corpus callosum
(ROI shown at bottom right). Frames (a–c) show QBI ODF maps where each ODF is (a) normalized to unit mass; (b) min–max normalized;
(c) min–max normalized and then scaled by GFA as described by Eq. [5]. Note how the min–max normalized ODF map amplifies the noise
in CSF. In the GFA-scaled, min–max normalized ODF map (c) fiber crossing can be seen at the crossing between gcc and acg (white arrow)
and at the bifurcation of the projections from the gcc (white arrow). Frames (d,e) show the DTI ODF map where each ODF is (d) normalized
to unit mass; (e) normalized to unit mass and then scaled by FA. The DTI ODF was derived from Eq. [2]. acg, anterior cingulate gyrus; f,
frontal horn of lateral ventricle; fx, fornix; ia, anterior limb of internal callosum.
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Substituting the Fourier relation between E and P into the
above equation gives

�q��E	 � � P�r, �, z�e2
i�z!�qr cos��� �	� �q�� q�

� ��!�q dq d d! r dr d� dz.

Integrating over z and ! we obtain

�q��E	 � � p�r, ��e2
iqr cos��� ���q�� q�q dq d r dr d�.

The exponential in the above equation can be expanded
into cylindrical waves using the cylindrical wave expan-
sion (i.e., Bessel function identity or Jacobi–Anger expan-
sion),

eix cos � � �
n���

��

inJn�x�ein�.

Integrating over q and  we have

�q��E	 � q� � �
n���

�� i
n

e��3/2�
ni�in�

� �1 � e2
ni�p�r, ��Jn�2
q�r�r dr d�.

Since (1-e2
ni)/n � 0 for all n " 0, only the n � 0 term
contributes. Using

lim
n30

�1 � e2
ni�/n ��2
i,

we finally obtain

��q��E	 � 2
q� � p�r, ��J0�2
q�r�r dr d�.

APPENDIX B

Scalar Measures

Scalar measures on the ODF are useful to define tissue
contrast, perform statistical analyses, or summarize geo-
metric properties of the ODF. We define the following
scalar measures: GFA, entropy, and order.

As an extension of the FA metric which is defined as
FA � std(�)/rms(�) where � are the eigenvalues of the
diffusion tensor, we define the GFA

GFA �
std��
rms��

� �n ¥i�1
n ��ui�� #$�2

�n � 1� ¥i�1
n �ui�

2 ,

where #$ � (1/n) ¥i�1
n (ui) � (1/n) is the mean of the

ODF. The last equality follows from the normalization of
the ODF. Note that like the FA metric for DTI, the GFA
metric is automatically normalized to [0,1]. We also define
the normalized entropy

NE ��
n

log n
#log $

and the nematic order parameter (31)

S �
1
2
#3 cos2ui

T#u$� 1$,

where #u$ is the mean diffusion direction, and #.$ denotes
the average over .
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