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Methods are presented to map complex fiber architectures in
tissues by imaging the 3D spectra of tissue water diffusion with
MR. First, theoretical considerations show why and under what
conditions diffusion contrast is positive. Using this result, spin
displacement spectra that are conventionally phase-encoded
can be accurately reconstructed by a Fourier transform of the
measured signal’s modulus. Second, studies of in vitro and in
vivo samples demonstrate correspondence between the orien-
tational maxima of the diffusion spectrum and those of the fiber
orientation density at each location. In specimens with complex
muscular tissue, such as the tongue, diffusion spectrum images
show characteristic local heterogeneities of fiber architectures,
including angular dispersion and intersection. Cerebral diffu-
sion spectra acquired in normal human subjects resolve known
white matter tracts and tract intersections. Finally, the relation
between the presented model-free imaging technique and
other available diffusion MRI schemes is discussed. Magn
Reson Med 54:1377–1386, 2005. © 2005 Wiley-Liss, Inc.

Over the past decade, MRI methods have been developed
that can nondestructively map the structural anisotropy of
fibrous tissues in living systems by mapping the diffusion
tensor (DT) of tissue water (for review see Ref. 1). Such
methods have been used to elucidate the fiber architecture
and functional dynamics of the myocardium (2,3) and
skeletal muscle (4). They have also been used in the ner-
vous system to identify and map the trajectories of neural
white matter tracts and infer neuroanatomic connectivity
(for review see Ref. 5).

Notwithstanding this progress, the DT paradigm has no-
table limitations. Because the distances resolved by MRI
are far larger than the diffusion scale, each 3D resolution
element (voxel) represents many distinct diffusional envi-
ronments. This provides a complicated diffusion signal
that in general is underspecified by the six degrees of
freedom of the DT model. An example of particular inter-
est occurs when a tissue has a composite fiber structure,

such that each small region may contain fibers of multiple
orientations corresponding to distinct diffusion anisotro-
pies (6).

The present study describes a model-free MRI method-
ology called diffusion spectrum imaging (DSI). This
method affords the capacity to resolve intravoxel diffusion
heterogeneity of compartments with sufficient angular
separation and anisotropy by measuring its diffusion den-
sity spectra estimator. In describing this method, we will
show that DSI generalizes the analysis of diffusion spectra
by demonstrating that the Fourier transform of the diffu-
sion spectrum must be positive. We also discuss how the
DSI method encompasses existing alternate analyses of
MRI diffusion contrast, and present examples of diffusion
contrast in biological tissues analyzed with DSI.

THEORY

Measuring the Diffusion Spectrum

We consider the classical Stejskal-Tanner experiment (7).
It allows the phase-encoding of spin displacements by
embedding a strong pulse gradient of duration � and in-
tensity �g� on each side of the � RF-pulse of a conventional
spin-echo sequence. In such a manner the MR signal is
made proportional to the voxel average (� � �) dephasing for
a specified diffusion duration �, which is the time elapsed
between the beginning of the first and second diffusion
gradients

S� � S0�ei��. [1]

where S0 is a constant that can be computed by the spin-
echo experiment without diffusion weighting. To gain
some insight about Eq. [1], we assume at first instance that
the duration � of the diffusion sensitizing gradient is neg-
ligible compared to the mixing time � (8). Thanks to this
narrow pulse approximation, the dephasing becomes pro-
portional to the scalar product between the relative spin
displacement r and the gradient wave vector q. Thus we
have � � q � r with r � x(�) � x(0). x(0) and x(�) must be
understood as the spin position at the time of the applica-
tion of the first and second diffusion gradient pulses, re-
spectively. The gradient wave vector is defined as q � 	�g,
where 	 is the gyromagnetic ratio and g is the gradient
vector.

We can consider the voxel average as an expectation
E�, which implies that the MR signal is proportional to
the characteristic function (9) of the relative spin displace-
ment vector. This yields a Fourier relationship between
the MR signal and the underlying density p� �(r).
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S�
q� � S0E
ei�� [2]

� S0 �
�3

p� �
r�eiq�rd3r [3]

p� �(r)represents the density of the average relative spin
displacement in a voxel (8). In other words, p� �(r)d3r is a
measure of the probability for a spin in a considered voxel
to make, during the experimental mixing time �, a vector
displacement r. In the case of absence of net translation or
flux, it describes the voxel averaged diffusion process. Of
course, some care must be taken with this description
because the signal is also potentially weighted by different
MR susceptibility effects. Therefore, and because it is cal-
culated by Fourier transformation of a measured quantity,
we simply refer to p� �(r) as the diffusion spectrum.

Practically, to exclude phase shifts arising from tissue
motion, diffusion spectra are reconstructed by taking the
Fourier transform of the modulus of the complex MR sig-
nal:

p� �
r� � S0
�1
2���3 �

�3

�S�
q��e�iq�rd3q [4]

Significantly, this modulus is precisely the information
required to reconstruct the diffusion spectra. Indeed, the
diffusion contrast (i.e., the Fourier transform of the diffu-
sion spectrum) is positive. To be more precise we show in
the sequel that the MRI signal is positive for any type of
spin motion without net flux (i.e., spin displacements due
to diffusion (thermal molecular agitation), or other random
fluxes such as intravoxel incoherent motion (10)).

Why Diffusion Contrast is Positive

To show that diffusion contrast is positive, we need to
assume that we are studying an isolated system with time-
invariant properties in which no net fluxes occur. These
conditions are well suited to our problem. The typical MR
experiment achieves a voxel size of a few millimeters on
each axis, and experimental mixing times on the order of
tens of milliseconds. The influence of diffusion on the MR
signal is proportional to the mass transfer. We combine
these observations with the fact that the mass transfer is
upper bounded by the case in which water diffuses freely.
This means that in the extreme worst case, the mass that
would transfer from one voxel to another during the ac-
quisition of one diffusion direction is less than a few
percent of the total voxel mass. In such situation the iso-
lated system condition seems acceptable. In addition, we
require that for the considered experimental time interval,
which corresponds to the duration necessary to sample
one diffusion direction, the system properties remain con-
stant (e.g., local diffusion coefficients and compartment
sizes do not change during the acquisition time � � �).
Accordingly, we consider the voxel as an isolated (or
closed) system with diffusion properties that are time-
invariant (i.e., homogenous). It remains for us to show that
in a closed system the Fourier transform of a displacement

spectrum due to a homogenous diffusion process in the
stationary state is real and positive.

Problem Formulation

We model water diffusion in a voxel by the random walk
of spins on a finite network, where the N vertices corre-
spond to a sufficient number of compartments and the
edges to the connection between them. We generally as-
sume that there exists a path from any compartment to any
other compartment (i.e., there is no isolated subnetwork,
and thus we say that the network is irreducible) and we
also assume that the system is driven only by diffusion
(i.e., at equilibrium there is no net flow between any two
compartments).

We construct the network with a complete directed
graph of order N and associate to every vertex i:

● a position vector xi � �3,
● a spin mass or number i(t), which we define without

loss of generality to be normalized: ¥i i(t) � 1 for all
t � ��.

To each edge i 3 j, we associate a weight qij that can be
considered as the average mass transfer from compartment
to compartment per unit time and per unit mass in i (or
simply flux rate from i to j). The matrix Q � (qij)ij is a set
of numbers that fully characterizes the system properties
by incorporating all of the effects that influence spin trans-
fer, such as local diffusion coefficients, local compartment
volumes, and geometries.

Let the stochastic process {x(t)}t�0 with values in
{x1, . . . , xN} be a random walk of a particle on that net-
work.

Diffusion Process as a Markov Chain (MC)

In the MC formalism (9), the stochastic process {x(t)}t�0

can be understood as a regular jump continuous-time ho-
mogeneous MC of finite state space. Accordingly, the mass
distribution vector, �(t) � [1(t), . . . , N(t)]T, which we
sometimes also write as a diagonal matrix M �
diag{1(t), . . . , N(t)}, becomes the distribution of the
MC, whereas the flux rate matrix Q becomes its infinites-
imal generator. The diffusion process is guided by a sys-
tem of differential equations that is expressed by Kolmog-
orov’s differential system (9). Its solution shows how the
transition matrix Pt can be expressed in terms of Q:

Pt � etQ. [5]

{Pt}t�0is called the transition semigroup of the chain and
corresponds for our system to the family of operators that
drive the diffusion process. In other words, Pt is respon-
sible for the evolution of the mass distribution vector �(s)
along time:

�T
s � t� � �T
s�Pt, with t, s � ��. [6]

From the problem formulation we see that this MC is
irreducible and ergodic (9), and consequently admits a
unique stationary distribution � � [�1, . . . , �N]T (9).
Moreover, we have assumed that diffusion is characterized
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by the absence of net flux. In MC terminology, this means
that the stationary distribution must satisfy the detailed
balance equations, i.e., �iqij � �jqji. These equations can
also be expressed by saying that Q has a similar matrix Q̃
that is symmetric:

Q � ��1/2Q̃�1/2, [7]

where � � diag{�1, . . . , �N}. Similar matrices have iden-
tical eigenvalues (11) and symmetric matrices have real
eigenvalues (11); therefore, Q and Q̃ have identical and
real eigenvalues that are � � diag{�1, . . . , �N}. If Q̃ ad-
mits the eigen-decomposition:

Q̃ � V�UT, [8]

then Q be written as:

Q � 
��1/2V��
�1/2U�T, [9]

where ��1/2V and �1/2U are the matrices, that contain
respectively the sets of left and right eigenvectors of Q. By
replacing Q in Eq. [5] by its expression in Eq. [9], it be-
comes:

Pt � ��1/2etQ̃ �1/2. [10]

Fourier Transform of the Diffusion Spectrum

Let us define the displacement spectrum p� t(r) over the
network as the probability for a spin in the network to
experience a relative vector displacement r for a diffusion
time t. If x(0) and x(t) are the random variables that define
the positions of an individual spin at time 0 and time t,
respectively, then we can write:

p� t
rk� � �
i,j:xj�xi�rk

Mii Pij, [11]

with Pij � (Pt)ij. In other words, we say that the sum over
the joint distribution p(x(t) � xj, x(0) � xi) � MiiPij is
restricted to the displacements such that x(t) � x(0) � rk.

It remains for us to take the Fourier transform of the
diffusion spectrum:

�
q� � �
k

p� t
rk�e��1 q�rk [12]

� �
i,j

MiiPij e��1 q�
xj�xi� [13]

� f*q
MPt�fq, [14]

where the effect of the spatial Fourier encoding on the
network is represented by the N-dimensional vector fq �
[e��1 q�x1, . . . , e��1 q�xN]T and its Hermitian f*q. Substi-
tuting Pt Eq. [14] by its expression in Eq. [10] yields:

�
q� � f*q
M��1/2etQ̃ �1/2�fq. [15]

If we consider the system in stationary state, M � �, and
therefore Eq. [15] simplifies as follows:

�
q� � 
f*q�1/2�etQ̃ 
�1/2fq� [16]

� u*qetQ̃ uq, [17]

where uq � �1/2fq.
Since the eigenvalues of Q̃ are real, by the spectral

mapping theorem (11), those of etQ̃ are real and positive,
and therefore:

u*et Q̃ u � 0, for all u � �N � �0� and for all t � ��, [18]

which completes the proof.

On the Finite Duration of Diffusion Encoding Gradients

As just shown, the narrow pulse approximation allows us
to easily understand the intrinsic Fourier relationship be-
tween the MR signal and the underlying water mobility
that is a mirror of the tissue compartmentation. However,
in practice, the duration of the diffusion-encoding gradient
is not negligible compared to the diffusion time � (i.e., � �
�), so the formalism developed above must be reexamined.
Interestingly, the reconstruction described in Eq. [4] still
remains valid with non-infinitesimal diffusion-encoding
gradients. In particular, the MR signal related to diffusion
remains positive (see Appendix). Nevertheless, as shown
by Mitra and Halperin (12), the interpretation of the diffu-
sion spectrum, p� �(r), must change slightly. In this case,
the vector r must be interpreted as the �-averaged relative
spin displacement. This means that r describes the dis-
placement of the spin mean position within the time in-
terval [0, �] relative to mean position in the interval [�, � �
�]. As a consequence, the diffusion distance is usually
slightly underestimated and the separation power dimin-
ishes. The global shape of the function remains and, in the
end, the interpretation is substantively unchanged.

DSI is a 6D MRI Technique

The effect of embedding diffusion-encoding gradients into
a classic spin-echo MRI experiment is that new dimen-
sions are added to the sampling space. While k-space
samples the spatial postion, q-space samples the space of
the spin displacements. In complete analogy to classic
k-space MRI, DSI samples k- and q-space at the same time,
yielding a true 6D imaging technique of position and dis-
placement.

MATERIALS AND METHODS

MR Experiments

Three data sets were acquired at 3T with an Allegra head-
scanner using a single-shot echo-planar MRI acquisition
with a spin-echo pulse sequence augmented by diffusion-
encoding gradient pulses, and incorporating two � RF
pulses to minimize the effects of eddy currents (13). At
each location, diffusion-weighted images were acquired
for N � 515 values of q-encoding, comprising in q-space
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the points of a cubic lattice within the sphere of five lattice
units in radius (Fig. 1b):

q � aqx � bqy � cqz, [19]

with a, b, c integers and �a2 � b2 � c2 � 5. qx, qy,and qz

denote the unit phase modulations in the respective coor-
dinate directions. The diffusion spectrum was then recon-
structed by taking the discrete 3D Fourier transform of the
signal modulus (Fig. 1c). The signal is premultiplied by a
Hanning window before Fourier transformation in order to

ensure a smooth attenuation of the signal at high �q� values.
The imaging parameters specific to each of the three data
sets are summarized in Table 1. The typical scheme for
brain imaging uses gradient pulses of peak intensity gmax

� 40 mT/m, duration � � 60ms with experimental mixing
time � � 66 ms, thus achieving a nominal isotropic reso-
lution rmin � qmax

�1 � 10 m of FOV rmax � qmin
�1 � 50 m1,

and a bmax � 17000 s/mm2.
Since we are mainly interested in the angular structure

of the diffusion spectrum, we further simplified the data
by taking a weighted radial summation of p� �(r):

ODF
u� ��
��

p� �
�u��2d�, with �u� � 1. [20]

This defines the orientation distribution function (ODF),
which measures the quantity of diffusion in the direction
of the unit vector u (Fig. 1d).

For some data we reconstructed the estimated DT by
least-square estimation using the 27 samples that lay on
the 3D Cartesian grid in a ball of radius bmax � 2000
s/mm2.

Sample Preparation and Subjects

Two normal subjects were scanned in compliance with the
MGH Institutional Review Board (IRB), the and confiden-
tiality was maintained in compliance with the Health In-
surance Portability and Accountability Act of 1996
(HIPPA). Fresh, nonfrozen beef tongue was placed without
any other treatment in the head coil, and the sample was
held at room temperature during the acquisition.

RESULTS

DSI in a coronal plane of the brain of a normal volunteer is
shown in Figs. 2 and 3. Figure 2 compares the signal

1Due to non-infinitesimal diffusion-gradient durations, the true rmin and rmax
are expected to be slightly larger.

FIG. 1. DSI reconstruction scheme. a: Tissue in a voxel under study.
Here the tissue is represented by two populations of fibers that
cross. b: Through the MR acquisition scheme the signal �S�(q)� is
sampled. c: In order to reconstruct the diffusion spectrum, the 3D
discrete Fourier transform is taken. d: To simplify the representation
of an imaging slice, the angular structure of diffusion is represented
as a polar plot of the radial projection (orientation distribution func-
tion). The color coding corresponds to the orientation of diffusion
(green: vertical diffusion; red: transverse diffusion).

FIG. 2. Spectral data for one voxel within the brainstem demonstrates heterogeneous diffusion anisotropy. a: Raw data �S�(q)� are shown
as a set of contour plots for consecutive 2D planes in q-space. These data show an intensity maximum with the shape of a tilted “X,” the
two lobes of which suggest contributions of two orientational fiber populations within this voxel. b: The diffusion spectrum p� �(r) is
reconstructed by discrete 3D Fourier transform of the raw data and is represented by 2D and 3D contour plots (the latter is a locus of points
r such that p� �(r) � constant. This 3D displacement spectrum shows two well-defined orientational maxima.
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�S�(q)� and its 3D Fourier transform, the diffusion spec-
trum p� �(r), for a voxel within the brainstem. Here the
signal �S�(q)� is clearly multimodal and far from Gaussian,
and its spectrum has 3D directional maxima orthogonal to
those of �S�(q)�.

Figure 3 illustrates the DSI experiment on the whole
coronal slice that includes elements of the corticospinal
tract and the pontine decussation of the middle cerebellar
peduncles. While Fig. 3a shows the DT image recon-
structed from the DSI data, Fig. 3b and c zoom in on the
brainstem and centrum semiovale. At each voxel is shown
the ODF represented as a spherical polar plot and colored
according to local orientations. In Fig. 3b we see that while
many voxels show spectral maxima of single orientations,
corresponding to the axial corticospinal tract (blue) and
mediolateral pontocerebellar fibers (green), voxels within
the intersection of these tracts at once show both orienta-
tional maxima. Figure 3c shows a portion of the centrum
semiovale, including elements of the corona radiata, supe-
rior longitudinal fasciculus, and corpus callosum, that are
respectively of axial, anteroposterior, and mediolateral ori-
entations. Diffusion spectra demonstrate the correspond-
ing orientational maxima, and in particular include voxels
that exhibit two- and three-way coincidences of these
tracts. Note that the DT of a voxel showing a symmetric
three-way crossing corresponds to a DT of low anisotropy
(see yellow circle).

The orientational maxima of local cerebral diffusion can
be used to identify in every voxel the axonal orientation of
several fiber populations. In Fig. 4 we imaged a parasagit-
tal brain block and used sticks to represent those maxima.
We can easily identify callosal fibers in the center of the
image (magenta to orange). When they extend laterally,
they partially cross the cingulate fiber bundle that runs
anteroposteriorly in green. In the upper part of the image,
blue sticks correspond to callosal and pyramidal fibers that
project into the apical cortex.

The application of DSI to muscular tissues is illustrated
by ex vivo studies of the tongue. The coupled contraction
of the intrinsic muscles of the tongue (a sheath of conven-
tional skeletal muscle of longitudinal orientation, and a
core of orthogonal interlaced fiber bundles of the transver-
sus and verticalis muscles) enables the tongue to stiffen,
deviate, and protrude in opposition to the longitudinalis.
This architecture is clearly delineated in DSI of a bovine
tongue (Fig. 5). While spectra at superficial locations show

single longitudinally-oriented maxima, corresponding to
the longitudinalis muscle, the core voxels usually show
two approximately orthogonal maxima corresponding to
the transversus and verticalis muscles.

DISCUSSION

The positivity of the Fourier transforms of diffusion spec-
tra of general diffusion processes described above gener-
alizes familiar facts. If diffusion is homogeneous and un-
restricted (i.e., Gaussian), then its displacement spectrum
is stable under self-convolution (Levy stable) and thus has
a positive Fourier transform. If diffusion is restricted and
fully evolved, then its displacement spectrum tends to the
autocorrelation of the restriction geometry (14), a function
whose transform again is positive. The present approach
encompasses the general situation expected in vivo, in
which microenvironments of distinct anisotropic diffu-
sivities exchange spins across a continuum of time scales.
In other words, depending on the allowed diffusion time
�, the water molecules have more or less time to explore
the tissue environment, and accordingly influence the dif-
fusion spectrum. Let us consider a simple model made of
a connected porous system, following the image given by
Callaghan (8). Intuitively, when the diffusion time is such
that the average diffusion distance is much smaller than
the restriction geometry, the diffusion spectrum is an iso-
tropic Gaussian function. At intermediate time scales,
spins are given a chance to explore fully the local com-
partment without exchanging significantly between adja-
cent pores. Hence, the diffusion spectrum captures the
additive effects of the pore shape autocorrelations. At
longer time scales, spin exchange equilibrates successively
with more distant compartments that generate successive
cross-correlation terms between pores. If these compart-
ments have different shapes and/or orientations, the ap-
pearance of cross terms will result in a blurrier diffusion
spectrum. This suggests that there must exist an optimal
diffusion time for which the diffusion spectrum is orien-
tationally the sharpest.

The study of diffusion by the quite general formalism
developed here, which also encompasses the more com-
monly used finite element model, naturally highlights the
essential features of the system that contribute to the pos-
itivity of the diffusion contrast. We see that positivity
relies critically on the facts that the system is in equilib-

Table 1
Summary of Acquisition Parameters

Data set Coronal brain slice Para-sagital brain block Fresh beef tongue
Technique Single-shot, single slice Single-shot, multi-slice Single-shot, single slice
Coil Single channel quadrature

head coil
Single channel quadrature

head coil
Single channel quadrature

head coil
Matrix size � number of slices 64 � 64 � 1 64 � 64 � 14 64 � 64 � 1
Voxel dimension [mm] 3.6 � 3.6 � 3.6 3.2 � 3.2 � 3.2 4 � 4 � 4
EPI readout [ms] 32 32 32
TE/TR [ms] 156/3000 156/3000 125/3000
�/� [ms] 66/60 66/60 50/45
gmax [mT/m] 40 40 40
bmax [s/mm2] 17000 17000 8000
Acquisition time [min] �25 �25 �25
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FIG. 3. Cerebral DSI of normal human subjects. a: The complete coronal brain slice under study. Diffusion is represented with a tensor fit from
the DSI data. Tensors are represented as boxes shaped by the eigenvalues and eigenvectors, and color-coded based on leading eigenvector
orientation (blue: axial; red: transverse; green: anteroposterior orientation). b: Zoom image of the brainstem. Diffusion spectra are represented as
polar plots of the ODFs that are color-coded depending on diffusion orientation. Here, the corticospinal tract contributes spectral maxima of axial
orientation (blue lobes along the vertical axis) and the pontine decussation of the middle cerebellar peduncle contributes horizontally (green lobes
crossing at center). Many local spectra show contributions of both structures. c: This image shows the centrum semiovale and contains elements
of the corticospinal tract (blue), corpus callosum (green), and superior longitudinal fasciculus (red), including voxels with two- and three-way
intersections of these components. Orientational correspondence between tensor and spectral data is best at locations with simple unimodal
spectra, while locations with multimodal diffusion spectra correspond to relatively isotropic DTs.

FIG. 4. Brain map of orientational diffusion max-
ima. Colored sticks are used to represent the local
maxima of diffusion in every voxel. They are used
to identify the local axonal orientation of several
fiber populations. Callosal fibers can be seen in the
center of the image (magenta to orange indicating
transverse orientation). More laterally, they cross
partially the cingulate fiber bundle that runs antero-
posteriorly (green). In the upper part of the image,
blue sticks of axial orientation correspond to cal-
losal and pyramidal fibers that project into the api-
cal cortex.
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rium, no net fluxes occur, and the considered voxel is
isolated from its neighbors. Although these constraints
should be respected in most voxels of the current in vivo
diffusion experiments, in some instances the precondi-
tions of positivity may be violated. Indeed, some instances
could induce a phase-shift when such processes have suf-
ficient spatial coherence to produce significant net orien-
tational asymmetry at the scale of one voxel. For example,
spin flux related to perfusion (15), or virtual flux produced
by inhomogeneous relaxation, as well as significant asym-
metric mass exchange at voxel boundaries—possibly oc-
curring with very high resolution imaging (e.g., the sub-
millimetric voxel model of Liu et al. (16))—may violate
positivity. In simulation, initializing the system in a non-
stationary distribution would be an additional cause for
artifactual phase-shift as spins redistribute toward the
equilibrium. In the absence of positivity, autocorrelations
of the present diffusion spectra may be reconstructed from
the square of the signal. Such autocorrelations will appear
less sharp than the displacement spectra, owing to terms
arising from cross-correlations between distinct spectral
components, and would not be linear functions of the
signal.

Through this general formalism, we have also shown
that using long diffusion-encoding gradients (� � �) nei-
ther precludes the positivity condition nor impairs signif-
icantly the interpretation of the diffusion spectrum. While

the object size estimation (17) may be problematic with the
use of a non-infinitesimal diffusion gradient, the only ef-
fect on orientation inference is expected to be a decrease in
separation power due to some blurring.

The analysis of tissue fiber architecture with DSI is
based on the familiar principle that water diffusion in
biological materials is least restricted in directions parallel
to fibers (18). When considering voxels of single fiber
population, the signal S(q) in 3D q-space is bright over a
2D disc, perpendicular to the fiber direction. After 3D
Fourier transformation, the resulting diffusion spectrum
concentrates along a line corresponding to the fiber direc-
tion. With two crossing fiber populations, we move from
two intersecting discs in q-space to two lines of maximum
intensity in the reciprocal space. In the context of mapping
fiber orientation, the 3D Fourier transform of the MR signal
has two obvious consequences: First, it enhances the SNR
by projecting the samples in a disc into a line, concentrat-
ing the energy of the data in a smaller volume fraction of a
3D space. This is just as in spectroscopy where the Fourier
transform concentrates the (long time) FID in a (band-
limited) spectral peak. Second, whereas in the multicom-
ponent case the minima and maxima of two crossing discs
in q-space are meaningless, after 3D Fourier transform
those maxima correspond to clear fiber orientations (Figs.
1 and 2). Like tensor imaging, DSI associates fiber orienta-
tions with directions of maximum diffusion, but it now
admits the possibility of having multiple directions at each
location. Histologically, neural tract and muscle intersec-
tions such as the examples (Figs. 3–5) above consist of
interdigitating multicellular fascicles that are tens to hun-
dreds of microns in diameter. While DT imaging (DTI) of
such architectures would essentially have to resolve indi-
vidual fascicles and would therefore require micrometric
resolution, DSI, as validated in Ref. 19, overcomes this
limitation by defining orientational coherence without in-
dividually resolving constituent fascicles. Such DSI re-
quires only sufficient spatial resolution as to limit intra-
voxel dispersion of fiber orientations that belong to a neu-
ral tract produced by bending, splaying, and twisting.

Determining the nominal angular resolution from the
DSI sample density is a straightforward procedure. Assum-
ing that the gradient vectors are isotropic across a sphere:

�4�

S
� � [21]

where S is the number of evenly spaced samples, and � is
the angular resolution in radians. In our sampling scheme,
some of the sample vectors are colinear with the origin,
and thus we have 411 samples over the unit sphere. This
means that our acquisition of 515 samples can provide, at
best, an angular resolution of 10° when localizing and
separating fiber bundles. Other factors will blur that ideal
resolution, including the angular heterogeneity of fiber
populations, the diffusion contrast, diffusion mixing time,
and the signal-to-noise ratio (SNR) of the acquisition.

The fiber orientation separation power relies critically
on the maximal sampling radius. While extending the
maximal sampling radius above b-values of 18000 s/mm2

is not expected to improve accuracy (20), not going far

FIG. 5. MRI of complex muscle. In this image we see as DSI image
of the bovine tongue, a coronal slice with 4-mm resolution, repre-
sented as polar plots of the ODFs. The longitudinalis muscle seen at
the superior surface of the tongue shows a single through-plane
orientation (red). The core of the tongue shows the intersecting
elements of the transversus (blue) and verticalis muscles (green),
which often coexist within one voxel. On the top right, an electron
micrograph illustrates the intersecting fascicles at the micrometric
level (courtesy of Vitaly Napidow and Richard Gilbert).
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enough in q-space will limit the angular contrast. In our
experience, a maximal b-value of 12000–18000 s/mm2

appears to be adequate for resolving well known areas of
crossing fibers, such as the brainstem and centrum semi-
ovale.

DTI is a widely used imaging technique that is based on
a Gaussian model. Since we are now able to do model-free
imaging by sampling without major a priori assumptions
about the diffusion function using DSI, it is worthwhile to
understand the relationship between these techniques. We
mentioned above that the MR signal S�(q) can be seen as
the characteristic function of the random variable r, which
describes the average spin displacement in a voxel (21).
The first few terms of its 3D Taylor expansion around zero
are:

ln�S�
q�/S0� � 0 � iqTE
r� �
1
2

qT�E
rrT� � E
r�E
r�T�q

� O
�q�3�, [22]

where E� means expectation, and [E(rrT) � E(r) E(r)T] is
the covariance matrix. As shown above, we can take into
account that the signal is a centered and even function
(odd terms are zero). To move to the DT model, we see
from the above expression that we need to neglect the
terms of order higher than 2. This can be done if i) the
wave vector q is small (qTE(rrT)q �1 or ii) diffusion is
Gaussian (moments of order higher than 2 are zero). We
then can rewrite Eq. [22] in the following form:

S�
q�/S0 � e�
1/2�qTE
rrT�q [23]

� e��qTDq, [24]

where the DT D is defined by the Einstein relation (E(rrT)
� 2�D) and we are back to the classic DTI formula (22). In
brain tissue, we expect the first condition to be satisfied
when b-values are less than 1000 s/mm2 and the second
condition to be satisfied in regions that exhibit single fiber
orientation. A Taylor expansion suggests a simple way to
measure non-Gaussianity (23) by considering the multivar-

iate kurtosis �2 (24), a function of the fourth-order moment
of the diffusion function. Interestingly, the image of ��2 of
a brain slice (Fig. 6b) looks very similar to the DTI-based
fractional anisotropy (FA) map (Fig. 6a, correlation coeffi-
cient, r � 0.6). This relation provides us with a new
interpretation of the meaning of FA. High FA can be inter-
preted as brain areas in which the anisotropic Gaussian
model is a good approximation and suggests unimodal
fiber orientations. Conversely, low FA occurs precisely
where kurtosis is high and corresponds to regions of com-
plex fiber architecture. We therefore need to interpret DTI
images with care when neither of the above conditions is
satisfied. It is also worthwhile to note that in Eq. [21] the
moments can be expressed in terms of DTs of correspond-
ing order, thus bringing up the generalized DT formalism
developed by Liu et al. (16).

New techniques called “high angular resolution meth-
ods” have recently emerged. They are all based on the
same principle, which consists of acquiring a large number
of diffusion-weighted samples of constant b-values distrib-
uted over a spherical shell. The ODFs are then recon-
structed by various algorithms. Optimization schemes (as
in Refs. 25 and 26) or direct reconstructions (as in q-ball
imaging (27)) are used. In the context of q-space imaging,
we notice that in the same way that DTI and its associated
Gaussian model can be seen as a low-pass approximation
of the evolved diffusion function, sampling a sphere of
constant b-value at high angular resolution is equivalent to
high-pass-filtering the diffusion spectrum. The problem is
then to recover the exact ODF from a band-limited signal,
which requires clever a priori assumptions.

Cohen and Assaf (17) and Avram et al. (28) studied
simple tubular tissue geometries by sampling in q-space a
line perpendicular to the main tissue axis. This allowed
them to retrieve information about the diameter of the
tubular shape by studying the diffraction patterns or by
computing the 1D Fourier transform of the acquired 1D
MR signal. Again in the context of DSI, 1D q-space imaging
can be understood as a projection imaging technique (i.e.,
the 1D Fourier transform along a line in q-space is the
projection of the 3D diffusion spectrum on that same line).
Like all projection imaging techniques, the mapping be-

FIG. 6. a: FA map of a brain slice computed by
reconstruction of the DT from the DSI data. b: The
negative of the kurtosis computed on the diffusion
spectrum. Note the correlation between both im-
ages (r � 0.6).
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tween the 3D shape and its 1D projection is not necessarily
one to one (e.g., the biexponential decay could be related
to two compartments of different diameters but also of
different orientation or permeability). This type of imag-
ing, though straightforward in simple geometries, might
raise intractable interpretation problems if attempted on
tissues with intra-voxel orientational heterogeneity like
the brain.

Based on the observation that diffusion contrast is pos-
itive, we have described DSI as a generalized model-free
diffusion MRI technique. DSI is a 6D imaging technique
that makes fiber orientation imaging a conventional MRI
technique, in the sense that it is faced with the standard
MRI limitations (such as SNR and angular resolution) and
is based on minor and well-supported assumptions. We
have shown that DSI has the capacity to unravel structural
information from tissue architecture as complex as micro-
metric interdigitating muscle fibers and crossing axonal
fibers in the central nervous system, without the need for
a priori information or ad hoc models.

APPENDIX

As noted above, the diffusion gradient pulses in the
Stejskal-Tanner experiment are indeed of finite duration.
Therefore, we must verify that even in this case the MR
signal is guaranteed to be positive. The framework pre-
sented in the Theory section above remains valid, which
means that the system is isolated and homogenous, and
the diffusion process in stationary state. We remember that
the MR signal can be seen as proportional to the expected
value of the dephasing due to spin motion (Eq. [2]). How-
ever, the phase is no longer proportional to the dot product
between the q-wave vector and the relative spin displace-
ment. The expression � � q � r needs to be reformulated.
We use the formalism developed by Caprihan et al. (29),
who wrote the dephasing induced by spin motion as a
function of a multiplet of infinitesimal narrow pulses.
Time is discretized regularly at intervals � � (� � �)/ 2L
and indexed by l � {�L, �L � 1, . . . , L}, where �L and
�1 are respectively the times at the beginning and end of
the first diffusion gradient, 0 corresponds to the time of the
� RF-pulse, �1 and �L, correspond respectively to the
beginning and end of the second diffusion gradient. This
yields the simple expression

� � q � �
l��L

L

alx
l� [25]

with al � �a�l and a0 � 0.
Mathematically, we can consider {x(l )}�L�l�L to be the

embedded discrete MC of the diffusion process {x(t)}t�0

described. It has a transition matrix P� and is reversible
because it satisfies the detailed balance equations (9). In
this context each x(l ) is a random variable defined on the
set of the network vertices, and represents the position of
the random walk at time index l. We call ¥l��L

L alx(l )
with al � �a�l and a0 � 0 a bipolar balanced random
sum.

To convince ourselves that the MR signal even with
finite-duration gradient pulses is real and positive, we
have to verify that for a reversible discrete homogenous
MC {x(l )}�L�l�L of positive transition matrix P� and in
stationary state, the function

�
q� � E
e��1 q�¥l��L
L alx
l��, [26]

where al � �a�l and a0 � 0 is real and positive for all q
� �3.

We start with the function defined in Eq. [26]. Without
loss of generality and for notational simplicity, we choose
al � �a�l � 1. The MC is in stationary state and is
reversible (9). Therefore, it is possible to express �(q) as
the expectation of the product of two conditional expec-
tations 2 by time reversal of the first half of the MC. We
thus have

�
q� � E
e��1 q�¥l��L
L alx
l��

� E
E
e���1 q�¥l��L
�1 x
l��x
�1��E
e��1 q�¥l�1

L x
l��x
1���, [27]

where the outer expectation is taken with respect to the
joint distribution p(x(1), x(�1)).

By analogy with the Theory section above, we redefine
an N-dimensional vector fq � [ f1, . . . , fN]T such that

fj � E
e��1 q�¥l�1
L x
l��x
1� � xj�. [28]

fjrepresents the value, which the second conditional ex-
pectation of Eq. [28] takes knowing that the value of the
chain at time is l � 1 is xj. It remains for us to express the
Hermitian vector f*q � [f�1, . . . , f�N] in terms of the values
of the first conditional expectation of Eq. [27]. This is
possible because the forward half chain {x(l )}1�l�L given
x1 is equally distributed as the backward half chain
{x(�l )}�L��l��1 given x�1. We thus have

f�i � E
e���1 q�¥l�1
L x
l��x
1� � xi�

� E
e���1 q�¥l��L
�1 x
l��x
�1� � xi�. [29]

We rewrite Eq. [27] in matrix form by using the newly
defined vectors fq and f*q and by noticing that in the sta-
tionary state the joint distribution p(x(1) � xj, x(�1) � xi)
� �iiPij, with Pij � (P2�)ij, hence:

�
q� � f*q
�P2��fq [29]

� 
f*q�1/2�e2�Q̃ 
�1/2fq�, [30]

by replacing in Eq. [29] P2� with Eq. [10]. It follows that
�(q) � 0 since we have seen that e2�Q̃ is a positive oper-
ator.

2For two random variables A and B the conditional expectation E(A�B � b) is
the value of the expectation of A knowing that B takes the value b..
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