Table 1: Mathematical definitions of complex network measures (see main text for an informal discussion). All binary and undirected measures are accompanied by their weighted and directed generalizations. Generalizations which have not been previously reported (to the best of our knowledge) are marked with a star (*). The Brain Connectivity Toolbox contains Matlab functions to compute most measures in this table.

Measure	Binary and undirected definitions	Weighted and directed definitions		
Basic concepts and measures				
Basic concepts and notation	<i>N</i> is the set of all nodes in the network, and <i>n</i> is the number of nodes. <i>L</i> is the set of all links in the network, and <i>l</i> is number of links. (<i>i</i> , <i>j</i>) is a link between nodes <i>i</i> and <i>j</i> (<i>i</i> , <i>j</i> \in <i>N</i>). <i>a_{ij}</i> is the connection status between <i>i</i> and <i>j</i> : <i>a_{ij}</i> = 1 when link (<i>i</i> , <i>j</i>) exists (when <i>i</i> and <i>j</i> are neighbors); <i>a_{ij}</i> = 0 otherwise (<i>a_{ii}</i> = 0 for all <i>i</i>). We compute the number of links as $l = \sum_{i,j \in N} a_{ij}$ (to avoid ambiguity with directed links we count each undirected link twice, as <i>a_{ij}</i> and as <i>a_{ji}</i>).	Links (i, j) are associated with connection weights w_{ij} . Henceforth we assume that weights are normalized, such that $0 \le w_{ij} \le 1$ for all <i>i</i> and <i>j</i> . l^{w} is the sum of all weights in the network, computed as $l^{w} = \sum_{i,j \in N} w_{ij}$. Directed links (i, j) are ordered from <i>i</i> to <i>j</i> . Consequently, in directed networks a_{ij} does not necessarily equal a_{ji} .		
Degree : number of links connected to a node	Degree of a node <i>i</i> , $k_i = \sum_{j \in N} a_{ij}.$	Weighted degree of i , $k_i^w = \sum_{j \in N} w_{ij}$. (Directed) out-degree of i , $k_i^{out} = \sum_{j \in N} a_{ij}$. (Directed) in-degree of i , $k_i^{in} = \sum_{j \in N} a_{ji}$.		
Shortest path length : a basis for measuring integration	Shortest path length (distance), between nodes <i>i</i> and <i>j</i> , $d_{ij} = \sum_{a_{uv} \in g_{i \leftrightarrow j}} a_{uv},$ where $g_{i \leftrightarrow j}$ is the shortest path (geodesic) between <i>i</i> and <i>j</i> . Note that $d_{ij} = \infty$ for all disconnected pairs <i>i</i> , <i>j</i> .	Shortest weighted path length between <i>i</i> and <i>j</i> , $d_{ij}^{w} = \sum_{a_{uv} \in g_{i \to j}^{w}} f(w_{uv})$, where <i>f</i> is a map (e.g. an inverse) from weight to length and $g_{i \leftrightarrow j}^{w}$ is the shortest weighted path between <i>i</i> and <i>j</i> . Shortest directed path length from <i>i</i> to <i>j</i> , $d_{ij}^{\rightarrow} = \sum_{a_{ij} \in g_{i \to j}} a_{ij}$, where $g_{i \to j}$ is the directed shortest path from <i>i</i> to <i>j</i> .		
Number of triangles: a basis for measuring segregation	Number of triangles around a node <i>i</i> , $t_i = \frac{1}{2} \sum_{j,h \in N} a_{ij} a_{ih} a_{jh}.$	(Weighted) geometric mean of triangles around <i>i</i> , $t_i^{W} = \frac{1}{2} \sum_{j,h \in N} (w_{ij} w_{ih} w_{jh})^{1/3}$. Number of directed triangles around <i>i</i> , $t_i^{\rightarrow} = \frac{1}{2} \sum_{j,h \in N} (a_{ij} + a_{ji}) (a_{ih} + a_{hi}) (a_{jh} + a_{hj})$.		
Measures of integration				
Characteristic path length	Characteristic path length of the network (e.g. Watts and Strogatz, 1998), $L = \frac{1}{n} \sum_{i \in N} L_i = \frac{1}{n} \sum_{i \in N} \frac{\sum_{j \in N, j \neq i} d_{ij}}{n-1},$	Weighted characteristic path length, $L^{w} = \frac{1}{n} \sum_{i \in N} \frac{\sum_{j \in N, j \neq i} d_{ij}^{w}}{n-1}$. Directed characteristic path length $L^{\rightarrow} = \frac{1}{n} \sum_{j \in N, j \neq i} \frac{\sum_{j \in N, j \neq i} d_{ij}^{\rightarrow}}{n-1}$.		
	where L_i is the average distance between node <i>i</i> and all other nodes.	Directed characteristic path length, $L = -\frac{1}{n} \sum_{i \in \mathbb{N}} \frac{1}{n-1}$.		

Global efficiency	Global efficiency of the network (Latora and Marchiori, 2001),	$1 \sum_{i \in \mathbb{N}} \sum_{i \neq i} \left(d_{ii}^{w} \right)^{-1}$
	$1 \sum_{n} 1 \sum_{j \in N, j \neq i} d_{ij}^{-1}$	Weighted global efficiency, $E^{W} = \frac{1}{n} \sum_{i \in N} \frac{-j \in N \ j \neq i \in V}{n-1}$.
	$E = \frac{1}{n} \sum_{i=1}^{n} E_i = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{n-1},$	1
	where E_i is the efficiency of node <i>i</i> .	Directed global efficiency $E^{\rightarrow} = \frac{1}{2} \sum_{i \in N, j \neq i} \left(d_{ij}^{\rightarrow} \right)^{-1}$
		Directed global efficiency, $E = -\frac{1}{n} \sum_{i \in \mathbb{N}} \frac{1}{n-1}$.
Measures of segreg	zation	
Clustering	Clustering coefficient of the network (Watts and Strogatz, 1998),	Weighted clustering coefficient (Onnela et al., 2005),
coefficient	$c - \frac{1}{2}\sum c - \frac{1}{2}\sum \frac{2t_i}{2}$	$C^{\rm w} = \frac{1}{2} \sum_{i \in \mathcal{N}} \frac{2t_i^{\rm w}}{2}$. See Saramaki et al. (2007) for other variants
	$C = \frac{1}{n} \sum_{i \in N} C_i = \frac{1}{n} \sum_{i \in N} \frac{1}{k_i (k_i - 1)}$	$n \sum_{i \in N} k_i(k_i-1)$
	where C_i is the clustering coefficient of node i ($C_i = 0$ for $k_i < 2$).	Directed clustering coefficient (Fagiolo, 2007),
		$C^{\rightarrow} = \frac{1}{2} \sum_{i \in N} \frac{t_i^{\rightarrow}}{t_i^{-1}}$
		$n^{2} \sum_{i \in \mathcal{N}} (k_i^{\text{out}} + k_i^{\text{in}}) (k_i^{\text{out}} + k_i^{\text{in}} - 1) - 2 \sum_{j \in \mathcal{N}} a_{ij} a_{ji}$
I ransitivity	1 ransitivity of the network (e.g. Newman, 2003), $\sum_{i=1}^{n} 2t$	Weighted transitivity*, $T^{W} = \frac{\sum_{i \in N} \sum_{i \in N} \sum_{i \in N} \sum_{j \in N} \sum_{i \in N} \sum_{i \in N} \sum_{j \in N} \sum_{i \in N} \sum_{j \in N} \sum_{i \in N} $
	$T = \frac{\sum_{i \in N} \sum_{i} \sum_{i \in N} \sum_$	
	$\sum_{i \in N} \kappa_i(\kappa_i - 1)$ Note that transitivity is not defined for individual nodes	Directed transitivity* $T^{\rightarrow} = \frac{\sum_{i \in N} t_i^{\rightarrow}}{\sum_{i \in N} t_i^{\rightarrow}}$
		$\sum_{i \in N} \left[\left(k_i^{\text{out}} + k_i^{\text{in}} \right) \left(k_i^{\text{out}} + k_i^{\text{in}} - 1 \right) - 2 \sum_{j \in N} a_{ij} a_{ji} \right]^{\frac{1}{2}}$
Local efficiency	Local efficiency of the network (Latora and Marchiori, 2001),	$\sum_{j,h \in N, j \neq i} \left(w_{ij} w_{ih} \left[d_{jh}^{w}(N_i) \right]^{-1} \right)^{1/3}$
	$F_{i} = -\frac{1}{N}\sum_{F_{i}} \sum_{j,h \in N, j \neq i} a_{ij} a_{ih} \left[d_{jh}(N_{i}) \right]^{-1}$	Weighted local efficiency*, $E_{\text{loc}}^{\text{w}} = \frac{1}{n} \sum_{i \in N} \frac{1}{k_i(k_i-1)}$.
	$L_{\text{loc}} = n \sum_{i \in \mathbb{N}} L_{\text{loc},i} = n \sum_{i \in \mathbb{N}} k_i (k_i - 1)$	
	where $E_{\text{loc},i}$ is the local efficiency of node <i>i</i> , and $d_{ih}(N_i)$ is the length of the	Directed local efficiency*,
	shortest path between j and h , that contains only neighbors of i .	$F^{\rightarrow} = \frac{1}{\sum_{i,j,k \in \mathbb{N}, j \neq i} \left(a_{ij} + a_{ji} \right) \left(a_{ih} + a_{hi} \right) \left(\left[d_{jh}^{\rightarrow}(N_i) \right]^{-1} + \left[d_{hj}^{\rightarrow}(N_i) \right]^{-1} \right)}$
		$L_{\text{loc}} = 2n \sum_{i \in \mathbb{N}} (k_i^{\text{out}} + k_i^{\text{in}})(k_i^{\text{out}} + k_i^{\text{in}} - 1) - 2\sum_{j \in \mathbb{N}} a_{ij} a_{ji}$
Modularity	Modularity of the network (Newman, 2004b),	Weighted modularity (Newman, 2004),
	$\sum \left[\left(\sum \right)^2 \right]$	$Q^{w} = \frac{1}{I_{w}} \sum_{i,j \in \mathbb{N}} \left w_{ij} - \frac{\kappa_i^* \kappa_j^*}{I_{w}} \right \delta_{m_i,m_i}.$
	$Q = \sum_{uv} \left[e_{uu} - \left(\sum_{v} e_{uv} \right) \right],$	
	$u \in M [$ $v \in M /]$ where the network is fully subdivided into a set of nonoverlapping modules	Directed modularity (Leicht and Newman, 2008),
	M and ρ is the proportion of all links that connect nodes in module u with	$O^{\rightarrow} = \frac{1}{2} \sum_{i} \sum_{i} \sum_{j} \left[a_{ii} - \frac{k_i^{\text{out}} k_i^{\text{in}}}{k_i} \right] \delta$
	nodes in module v .	$\mathbf{v} = \frac{1}{l} \boldsymbol{\Sigma}_{l,j} \in \mathbb{N} \begin{bmatrix} u_{lj} & l \end{bmatrix} \mathbf{v}_{m_l,m_j}^{m_l,m_j}.$
	An equivalent alternative formulation of the modularity (Newman, 2006) is	
	given by $Q = \frac{1}{i} \sum_{i,j \in N} \left(a_{ij} - \frac{k_i k_j}{i} \right) \delta_{m_i,m_j}$, where m_i is the module	
	containing node <i>i</i> , and $\delta_{m_i m_i} = 1$ if $m_i = m_i$, and 0 otherwise.	
		l

Measures of centrality					
Closeness	Closeness centrality of node i (e.g. Freeman, 1978),	Weighted closeness centrality, $(L_i^{w})^{-1} = \frac{n-1}{\sum_{i \in N} i \neq i} d_i^{w}$.			
centrality	$L_i^{-1} = \frac{n-1}{\sum d}.$	$\sum_{j \in \mathbb{N}} j \neq l \approx ij$			
	$\sum_{j \in N, j \neq i} u_{ij}$	Directed closeness centrality, $(L_i^{\rightarrow})^{-1} = \frac{n-1}{\sum_{i \in \mathbb{N}} i \neq i} d_{ii}^{\rightarrow}$.			
Betweenness	Betweenness centrality of node <i>i</i> (e.g. Freeman, 1978),	Betweenness centrality is computed equivalently on weighted and directed			
centrality	$b_i = \frac{1}{(n-1)(n-2)} \sum_{\substack{h, i \in N \\ \rho_{hj}}} \frac{\rho_{hj}(i)}{\rho_{hj}},$	networks, provided that path lengths are computed on respective weighted or directed paths.			
	$h \neq j, h \neq i, j \neq i$				
	where ρ_{hj} is the number of shortest paths between h and j, and $\rho_{hj}(i)$ is the				
Within modulo	Number of shortest paths between h and j that pass through l.	$k^{W}(m) - \overline{k}^{W}(m)$			
degree z-score	within-module degree z-score of node t (Outmera and Amarai, 2003), $k_i(m_i) - \bar{k}(m_i)$	Weighted within-module degree z-score, $z_i^{W} = \frac{\kappa_i (m_i) - \kappa_i (m_i)}{\sigma^{k^{W}(m_i)}}$.			
g	$z_i = \frac{n_i(m_i) - n_i(m_i)}{\sigma^{k(m_i)}},$	$r_{\rm out}$			
	where m_i is the module containing node <i>i</i> , $k_i(m_i)$ is the within-module	Within-module out-degree z-score, $z_i^{\text{out}} = \frac{k_i^{\text{out}}(m_i) - k^{\text{out}}(m_i)}{\sigma^{k^{\text{out}}(m_i)}}$.			
	degree of <i>i</i> (the number of links between <i>i</i> and all other nodes in m_i), and	Within-module in-degree z-score $z^{in} = \frac{k_i^{in}(m_i) - \bar{k}^{in}(m_i)}{k_i^{in}(m_i) - \bar{k}^{in}(m_i)}$			
	$k(m_i)$ and $\sigma^{k(m_i)}$ are the respective mean and standard deviation of the within-module m_i degree distribution.	$\sigma^{k^{\text{in}}(m_i)}$			
Participation	Participation coefficient of node <i>i</i> (Guimera and Amaral, 2005),	Weighted participation coefficient $w = 1 - \sum_{i=1}^{\infty} \left(k_i^w(m)\right)^2$			
coefficient	$y_i = 1 - \sum_{i=1}^{n} \left(\frac{k_i(m)}{k_i} \right)^2,$	weighted participation coefficient, $y_i^* = 1 - \sum_{m \in M} \left(\frac{k_i^*}{k_i^*} \right)$			
	where <i>M</i> is the set of modules (see modularity), and $k_i(m)$ is the number of	Out-degree participation coefficient, $y_i^{\text{out}} = 1 - \sum_{m \in M} \left(\frac{k_i^{\text{out}}(m)}{k_i^{\text{out}}} \right)^2$.			
	links between i and all nodes in module m .	$\left(k_{i}^{\text{in}}(m)\right)^{2}$			
		In-degree participation coefficient, $y_i^{\text{in}} = 1 - \sum_{m \in M} \left(\frac{h_i^{\text{in}}}{k_i^{\text{in}}} \right)$.			
Network motifs	Network motifs				
Anatomical and	J_h is the number of occurrences of motif h in all subsets of the network	(Weighted) intensity of <i>h</i> (Onnela et al. 2005) $L = \sum_{k} (\prod_{(i,j) \in I} w_{ij})^{\frac{1}{l_h}}$			
functional	(subnetworks). <i>h</i> is an n_h node, l_h link, directed connected pattern. <i>h</i> will	where the sum is over all occurrences of h in the network, and L_{hu} is the set			
motifs	the subnetwork match links in h (Milo et al., 2002), h will occur (possibly	of links in the <i>u</i> th occurrence of h .			
	more than once) as a functional motif in an n_h node, $l'_h \ge l_h$ link				
	subnetwork, if at least one combination of l_h links in the subnetwork matches	Note that motifs are directed by definition.			
M-4:6	links in <i>h</i> (Sporns and Kötter, 2004).				
Moul z-score	Z-score of motif <i>n</i> (Milo, 2002), $I_{h} = \langle I_{and h} \rangle$	Intensity z-score of motif <i>h</i> (Onnela et al., 2005), $z_h^I = \frac{T_h - (T_{rand,h})}{\sigma^{T_{rand,h}}}$,			
	$z_h = \frac{J_h \text{Orand}_h}{\sigma^{J_{\text{rand}}_h}},$	where $\langle I_{\text{rand},h} \rangle$ and $\sigma^{I_{\text{rand},h}}$ are the respective mean and standard deviation for			
	where $\langle J_{\text{rand},h} \rangle$ and $\sigma^{J_{\text{rand},h}}$ are the respective mean and standard deviation for	the intensity of <i>h</i> in an ensemble of random networks.			
	the number of occurrences of h in an ensemble of random networks.				

Motif	n_h node motif fingerprint of the network (Sporns and Kötter, 2004),	n_h node motif intensity fingerprint of the network,		
fingerprint	$F_{n_h}(h') = \sum F_{n_h,i}(h') = \sum J_{h',i},$	$F_{n_{h}}^{i}(h) = \sum_{i \in N} F_{n_{h},i}^{i}(h) = \sum_{i \in N} I_{h',i}^{i},$		
	$\overline{i \in N}$ $\overline{i \in N}$ $\overline{i \in N}$	where h is any n_h node motif, $F_{n_h,i}^{(h)}(h)$ is the n_h node motif intensity		
	node <i>i</i> , and $I_{k'}$ is the number of occurrences of motif h' around node <i>i</i> .	Interprint for node <i>i</i> , and $I_{h',i}$ is the intensity of motif <i>n</i> around node <i>i</i> .		
Measures of resilience				
Degree	Cumulative degree distribution of the network (Barabasi and Albert, 1999),	Cumulative weighted degree distribution, $P(k^{w}) = \sum_{k' \ge k^{w}} p(k')$,		
distribution	$P(k) = \sum_{i} p(k'),$	Cumulative out degree distribution $P(k^{\text{out}}) = \sum_{k' \in \mathcal{M}} n(k')$		
	$k \geq k$	Cumulative out-degree distribution, $P(k^{\text{in}}) = \sum_{k \ge k^{\text{out}}} p(k')$.		
Average	Average degree of neighbors of node <i>i</i> (Pastor-Sattoras et al. 2001)	Average weighted neighbor degree (modified from Barrat et al. 2004)		
neighbor degree	$\sum_{i \in N} a_{ii} k_i$	$\sum_{i=W} \sum_{j \in N} w_{ij} k_j^{W}$		
	$k_{\mathrm{nn},i} = \frac{-k_{\mathrm{nn},i}}{k_{i}}$	$\kappa_{\mathrm{nn},i} = \frac{1}{k_i^{\mathrm{w}}}$		
		Average directed neighbor degree*, $k_{nn,i}^{\rightarrow} = \frac{\sum_{j \in N} (a_{ij} + a_{ji}) (k_i^{\text{out}} + k_i^{\text{in}})}{2(k_i^{\text{out}} + k_i^{\text{in}})}$.		
Assortativity	Assortativity coefficient of the network (Newman, 2002),	Weighted assortativity coefficient (modified from Leung and Chau, 2007),		
coefficient	$l^{-1} \sum_{(i,i) \in I} k_i k_i - \left[l^{-1} \sum_{(i,i) \in I} \frac{1}{2} (k_i + k_i) \right]^2$	$r^{W} = \frac{l^{-1} \sum_{(i,j) \in L} w_{ij} k_{i}^{W} k_{j}^{W} - \left[l^{-1} \sum_{(i,j) \in L} \frac{1}{2} w_{ij} \left(k_{i}^{W} + k_{j}^{W} \right) \right]^{2}}{l^{2}}$		
	$r = \frac{1}{1 + 1} $	$l^{-1} = \frac{1}{l^{-1} \sum_{(i,j) \in L_2^2} w_{ij} \left(\left(k_i^{w} \right)^2 + \left(k_j^{w} \right)^2 \right) - \left[l^{-1} \sum_{(i,j) \in L_2^2} w_{ij} \left(k_i^{w} + k_j^{w} \right) \right]^2}.$		
	$l^{-1} \sum_{(i,j) \in L} \frac{1}{2} \left(k_i^2 + k_j^2 \right) - \left[l^{-1} \sum_{(i,j) \in L} \frac{1}{2} \left(k_i + k_j \right) \right]$			
		Directed assortativity coefficient (Newman, 2002),		
		$r^{\rightarrow} = \frac{l^{-1} \sum_{(i,j) \in L} k_i^{\text{out}} k_j^{\text{in}} - \left[l^{-1} \sum_{(i,j) \in L_2^{\frac{1}{2}}} (k_i^{\text{out}} + k_j^{\text{in}})\right]}{2\pi}$		
		$l^{-1} \sum_{(i,j)\in L_2^2} \left \left(k_i^{\text{out}} \right)^2 + \left(k_j^{\text{in}} \right)^2 \right - \left[l^{-1} \sum_{(i,j)\in L_2^2} \left(k_i^{\text{out}} + k_j^{\text{in}} \right) \right]^2$		
Other concepts				
Degree	Degree-distribution preserving randomization is implemented by iteratively	The algorithm is equivalent for weighted and directed networks. In weighted		
distribution	choosing four distinct nodes $i_1, j_1, i_2, j_2 \in N$ at random, such that links	networks, weights may be switched together with links; in this case the		
preserving	$(l_1, J_1), (l_2, J_2) \in L$, while links $(l_1, J_2), (l_2, J_1) \notin L$. The links are then rewired such that $(i_1, i_2), (i_2, i_3) \in L$ and $(i_1, i_2), (i_2, i_3) \notin L$ (Maslov and	approximated on the topologically randomized graph with a heuristic weight		
randomization.	Sneppen, 2002). "Latticization" (a lattice-like topology) results if an	reshuffling scheme.		
	additional constraint is imposed, $ i_1 + j_2 + i_2 + j_1 < i_1 + j_1 + i_2 + j_2 $			
	(Sporns and Kötter, 2004).			
Measure of	Network small-worldness (Humphries et al., 2008),	Weighted network small-worldness, $S^{W} = \frac{C^{W}/C_{rand}^{W}}{I^{W}/I^{W}}$.		
worldness.	$S = \frac{C/C_{\text{rand}}}{L/L}$	2 / ² rand		
·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ··	where C and C_{rand} are the clustering coefficients, and L and L_{rand} are the	Directed network small-worldness, $S^{\rightarrow} = \frac{C^{\rightarrow}/C_{\text{rand}}}{C_{\text{rand}}}$.		
	characteristic path lengths of the respective tested network and a random	$L \rightarrow / L_{rand}$		
	network. Small-world networks often have $S \gg 1$.	In both cases, small-world networks often have $S \gg 1$.		