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Abstract
In recent years, there has been a dramatic increase in research papers about machine learning (ML) and artificial intelligence in
radiology. With so many papers around, it is of paramount importance to make a proper scientific quality assessment as to their
validity, reliability, effectiveness, and clinical applicability. Due to methodological complexity, the papers on ML in radiology
are often hard to evaluate, requiring a good understanding of key methodological issues. In this review, we aimed to guide the
radiology community about key methodological aspects of ML to improve their academic reading and peer-review experience.
Key aspects of ML pipeline were presented within four broad categories: study design, data handling, modelling, and reporting.
Sixteen key methodological items and related common pitfalls were reviewed with a fresh perspective: database size, robustness
of reference standard, information leakage, feature scaling, reliability of features, high dimensionality, perturbations in feature
selection, class balance, bias-variance trade-off, hyperparameter tuning, performance metrics, generalisability, clinical utility,
comparison with traditional tools, data sharing, and transparent reporting.
Key Points
• Machine learning is new and rather complex for the radiology community.
• Validity, reliability, effectiveness, and clinical applicability of studies on machine learning can be evaluated with a proper
understanding of key methodological concepts about study design, data handling, modelling, and reporting.

• Understanding key methodological concepts will provide a better academic reading and peer-review experience for the
radiology community.
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Abbreviations
ML Machine learning

Introduction

As a subfield of artificial intelligence, machine learning (ML)
is the study of computer algorithms that learn from the input

data and make predictions on unseen instances [1, 2]. ML
algorithms are designed to operate without specific rule-
based instructions, improving themselves by learning and
correcting through experience [1–4]. ML is broadly grouped
into two categories with a key difference in the use of labels
for model development. While supervised learning needs la-
bels in training, unsupervised learning requires no labels in
discovering patterns in data sets. Several ML algorithms exist
with a wide range of complexity levels. Of which, deep learn-
ing is a particular field of ML and capable of handling very
large amount of data, even without any need for traditional
feature extraction.

Owing to the advances in deep learning, ML has been
rapidly expanding in recent years, invading as much radiology
environment as possible [5, 6]. Being mostly based on super-
vised learning, the application area of ML in radiology is vast,
ranging from image acquisition to outcome prediction [1].

* Burak Kocak
drburakkocak@gmail.com

1 Department of Radiology, Basaksehir Cam and Sakura City
Hospital, Basaksehir, 34480 Istanbul, Turkey

2 Department of Radiology, Istanbul Training and Research Hospital,
Samatya, 34098 Istanbul, Turkey

https://doi.org/10.1007/s00330-020-07324-4

/ Published online: 1 October 2020

European Radiology (2021) 31:1819–1830

http://crossmark.crossref.org/dialog/?doi=10.1007/s00330-020-07324-4&domain=pdf
https://orcid.org/0000-0002-7307-396X
mailto:drburakkocak@gmail.com


Common ML tasks in radiology are prioritising worklists [7],
classification of reports [8], risk assessment [9], screening
[10], detection [11], segmentation [12], histopathologic diag-
nosis [13], radiogenomics [14, 15], and image acquisition im-
provement [16]. AlthoughML offers various opportunities for
radiology, it also brings along many methodological chal-
lenges and pitfalls [6, 17, 18]. Interestingly, many of these
are not specific to radiology and have already been addressed
in other fields such as genomics, biostatistics, and bioinfor-
matics [19–23].

Despite the widespread interest in ML, the methodology of
ML papers is mostly complex and elusive for the radiology
community. Without a good understanding of key methodo-
logical concepts, it might be very hard for radiologists to make
a proper assessment and critique of the works as to their va-
lidity, reliability, effectiveness, and clinical applicability.

In this paper, we aimed to provide radiologists with a fresh
perspective on how to evaluate the published literature and
manuscript drafts that use ML in radiology. To achieve this,
we concentrated on sixteen key methodological quality con-
cepts of ML.

Key methodological concepts

ML-based pipelines vary to a large extend [24]. On the other
hand, core concepts usually remain the same. Important steps
of an ML pipeline can be grouped as follows: design, data
handling, modelling, and reporting. A simplified illustration
of these steps is given in Fig. 1. Key concepts that need atten-
tion in the evaluation of ML papers are given in Fig. 2. Before
going into detail, a glossary of basic ML terminology is given
in Table 1.

Key concepts of study design

Common pitfalls and recommendations for study design are
summarised in Table 2.

Database size

ML projects need large and heterogeneous data sets to ensure
generalisability. However, this is usually hardly achieved in
radiology research due to a variety of reasons. A common
pitfall that can be avoided is to train a model with an extremely
small data set. Such a premature strategy poses many chal-
lenges to deal with, for instance, overfitting, noise, and
outliers.

To our best knowledge, there is currently no well-adopted
method for determining the optimal database size for ML and
all proposed strategies are empirical. Statistical power calcu-
lations might result in thousands of instances, even for estab-
lishing the testing set, which seems hardly achievable for all
radiology tasks. To minimise the effects of overfitting and
improve the quality of predictive performance metrics, the
inclusion of at least 50 instances might be sufficient for initial
research [5, 25–27]. On the other hand, this number would be
inappropriate for the development of highly generalisable and
clinically useful real-world ML applications. Another com-
mon recommendation is to have a data size that is more than
ten times the number of features [28, 29]. Furthermore, the
complexity of algorithms (e.g., k-nearest neighbours versus
deep learning) and tasks (e.g., substantially heterogeneous
population or subtle discretionary features) should always be
considered when deciding the appropriateness of database
size. Aside from these recommendations, another well-
known strategy is to plot a learning curve for error or accuracy
values versus training data size [30].

Robustness of reference standard

The reference standard is usually an accepted test or a gold
standard or expert diagnosis. Source and rationale of the ref-
erence standard must be clearly mentioned in ML papers.

Robustness of reference standard corresponds to the stabil-
ity of labels in varying conditions such as different readers,
scanners, or technical protocols, which is critical not only for
high-quality model development but also for the overall

Fig. 1 Machine learning-based study pipeline
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success of the project [31]. Strategies for reducing such vari-
abilities would be consensus evaluations by experts, majority
voting, or selecting a reference standard that is less sensitive to
variabilities. It is noteworthy to mention that these concerns
on the robustness of reference standards are much more im-
portant in medicine compared with other fields because even a
small difference in predictive performance might have a sig-
nificant influence on a large patient population.

Key concepts of data handling

Common pitfalls and recommendations for data handling are
summarised in Table 2.

Information leakage

Information leakage is one of the most significant pitfalls in
MLmodelling. It can be simply defined as the transmission of
information among training, validation, and testing datasets,
due to incomplete separation of the data.

The information leakage might occur in any stage of the
ML pipeline. One should be very careful in detecting this
pitfall because its occurrence might not be so obvious and
can be easily missed [32], even if separate validation and test
partitions are reported. Information leakage can be frequently
encountered in following data handling steps: feature scaling,

dimension reduction or feature selection, and hyperparameter
tuning. It can be minimised or completely avoided through
careful data separation [33, 34].

It should also be kept in mind that data leakage usually
occurs at the first steps of the pipeline. Therefore, the data split
must be done at the beginning of the pipeline. In other words,
the separation of the data set must be done just after designat-
ing the raw data inputs because even preprocessing of the
images (e.g., grey-level discretisation according to bin-width)
before feature extraction might lead to leakage, causing opti-
mistic results.

Feature scaling

Feature values are usually presented in different scales,
which need to be considered in many ML classification
tasks because the parameters of some algorithms are influ-
enced by the scale of features. Particularly, distance-based
algorithms like support vector machine, k-nearest neigh-
bours, and artificial neural networks significantly benefit
from feature scaling. On the other hand, some other algo-
rithms like tree-based random forest do not need such re-
quirements. Feature scaling can be done in a few ways. The
most common approaches are standardisation, normalisa-
tion, and logarithmic transformation [35]. It is also impor-
tant to note that scaling is an integral part of the neural
network and deep learning architectures [36, 37].

Fig. 2 Key methodological concepts according to four main study steps
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It is worth mentioning that feature scaling is a completely
different task from the scaling of images or image intensities
[24]. The latter is commonly used to avoid some challenges
posed by the scanner or site-specific variabilities in the field of
newly emerging radiomics [24]. Neglecting feature scaling
may lead to overrepresentation or underrepresentation of
some features and cause bias in the analysis.

Reliability of features

The reliability of features defines the reproducibility of the fea-
tures during extraction. Reliable features are highly resistant to

changing conditions of the feature extraction process, for in-
stance, segmentation margin differences [38], use of different
image slice (i.e., slice selection bias in 2D analysis) [39, 40],
and scanning protocol differences [41–43]. When analysing
medical images, some preprocessing steps (e.g., pixel/voxel
resampling, intensity normalisation) are necessary to obtain re-
liable features [44]. However, despite thesemeasures, reliability
remains a challenge [42, 45, 46]. The reliability can be assessed
with several approaches such as intra-reader and inter-reader
agreement analysis for detection of manual and semi-
automatic segmentation differences [39, 47, 48], test-retest
analysis for automatic methods [49], reproducibility analysis

Table 1 Basic terminology of
machine learning Term Meaning

Artificial intelligence A broad concept describing automated systems that can perform tasks
requiring intelligence

Machine learning Study of computer algorithms that learn from the input data and make
predictions on unseen instances

Deep learning A particular machine learning algorithm that is mainly composed of very
large and intricate neural networks

Supervised learning Modelling with labelled data

Unsupervised learning Modelling with unlabelled data

Transfer learning Modelling through previously trained algorithms, with modifications

Model A mathematical data structure created with machine learning algorithms,
which can predict and improve

Regression Prediction of numeric outcomes

Classification Prediction of categorical outcomes

Parameter Values in models usually specific to algorithms that are established
according to data used, without external intervention

Hyperparameter High-level values in models unique to algorithms that can be altered or
tuned by external operators

Hyperparameter tuning Process of finding the best hyperparameters in modelling

Training data Data used in the development of models

Validation data Data used to tune the model and to assess internal generalisability

Testing data Unseen data set used for the final assessment of generalisability

Label Targets or reference standards that machine learning algorithms try to
predict

Reference standard True values or outcomes against the ones generated by the proposed
model

Bias Difference between predictions and actual values that occurs when the
prediction models are systematically prejudiced due to inaccurate
assumptions

Variance Level of variability and spread between predictions and actual values

Overfitting Modelling error showing high training and poor test performance

Underfitting Modelling error showing poor training and poor test performance

Cross-validation A validation method generally used in the training phase of modelling,
with no overlap among validation parts

Independent validation Ultimate generalisability assessment using completely unseen instances

Regularisation Methods to reduce overfitting such as augmentation, early stopping,
ensemble methods, parameter regularisation

Dimension reduction Process of reducing the number of features using specific methods such as
algorithm-based feature selection

Feature selection Selection of relevant features with particular algorithms
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with different scanners or scanning protocols [46], and phantom
or simulation measurements [43].

Development of models without a reliability assessment
may lead to significant generalisability problems [50].
Nevertheless, there are some very interesting works with no

attempt in selecting reliable features for their models [51–53].
Disregarding the reliability of features should be acceptable
on the condition that the work has a true external independent
validation cohort that is large enough to avoid bias and mis-
leading conclusions.

Table 2 Common pitfalls and recommendations for the key concepts of study design and data handling

Study steps Key issues Common pitfalls Recommendations

Study design Database size • Building models with extremely small data
• Disregarding the proportion between the

number of features and instances

• Check if at least 50 instances are included (for research
purposes)

• Check if the number of instances is at least ten times the
number of features

• Always consider the complexity of the algorithm and task in
evaluating the appropriateness of database size

• Traditional power analysis might be incorporated, to obtain
optimal database size to assess actual generalisability and
effect

• Evaluate the learning curve, if provided

Robustness of
reference standard

• Unclear definition of reference standard
• Building models on a weak

reference standard

• Check if the reference standard is clearly defined
• Check if the rationale of selecting the reference standard is

explained
• Check if it is not subjective or less subjective when

alternatives exist
• Check which strategies are used to reduce the subjectivity of

reference standard (e.g., consensus, majority voting)

Data handling Information leakage • Incomplete separation of data
• Not separating the data at the

very beginning

• Keep in mind that information leakage might occur in any
step of the pipeline as early as in image preprocessing (e.g.
optimal bin-width calculation)

• Check if data split is performed correctly, that is, at the
beginning of the pipeline

• Check if test data is completely locked and remained
untouched at each step of the pipeline (e.g., preprocessing,
feature scaling, dimension reduction)

Feature scaling • Disregarding feature scaling
• Scaling of whole data

• Bear in mind that feature scaling (e.g., normalisation and
standardisation) is a different task from the scaling of
images or image intensities

•Check if themachine learning algorithm used requires feature
scaling

• Check if feature scaling is separately done in the training and
testing sets

Reliability of features • Disregarding reliability assessment of features
• Building models on non-robust features

• Check whether any reliability assessment is done (e.g.,
intra-reader and inter-reader agreement in segmentation,
test-retest reproducibility, phantom simulations)

• Not assessing the robustness of features should be acceptable
only if there is a true external independent validation cohort
that is large enough to avoid bias

• Check if reliability assessment is only done in the training
phase

High dimensionality • High dimensional modelling
• Reducing dimension in whole data

• Check if any of the following dimension reduction methods
are included in the analysis: feature reliability analysis,
collinearity analysis, clustering, principal component
analysis, independent component analysis, and
algorithm-based feature selection

•Remember dimensionality reductionmust be done only in the
training set

Perturbations in
feature selection

• Disregarding the influence of data
perturbations in feature selection

• Check whether feature selection is done with multiple
random sampling, folding or random initiations because
feature selection has a dependence on the data structure
(e.g., data size, the order of instances)
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High dimensionality

Advances in radiomics approaches have led to the extraction
of a very high number of features, that is, high dimensionality.
High dimensionality is considered a challenge to be dealt with
in ML because it may induce multicollinearity, overfitting,
and false discovery. Hence, redundant features should be
eliminated through certain dimension reduction strategies.

Several methods can be used for dimension reduction [54].
Intra-reader and inter-reader feature reliability analysis,
multicollinearity analysis, clustering, principal component
analysis, and independent component analysis are the most
common unsupervised methods. On the other hand,
algorithm-based feature selection (e.g., wrapper, embedded,
or filtering methods) is the most widely used supervised meth-
od [55, 56].

Perturbations in feature selection

The algorithm-based feature selection process has some inher-
ent susceptibilities about the data structure such as data size,
the order of input data, and initiations. Particularly when using
small data, such susceptibilitiesmight bemuchmore apparent.
Therefore, a common pitfall is to select features without con-
sidering possible perturbations in feature selection, which
might lead to inappropriate feature selection and in turn
generalisability problems [57, 58]. To minimise such suscep-
tibilities of feature selection, the easiest way is to select fea-
tures with multiple sampling, folding, or random initiations.

Key concepts of modelling

Common pitfalls and recommendations for modelling are
summarised in Table 3.

Class balance

Class imbalance is an important issue in ML [45]. In case of
severe imbalance, some algorithms are tended to vote for the
majority class, inducing unrealistic outcomes and in turn very
poor generalisability [59]. Ignoring the class imbalance is a
major pitfall in ML modelling. For this reason, ML-based
analysis with severe imbalance should include certain mea-
sures such as oversampling (synthetic or original),
undersampling, or training with a trade-off between sensitivity
and specificity.

It is also noteworthy tomention that the sampling strategies
are usually recommended only for the training set. The rule of
thumb is that no sampling should be done on the testing set.
This is particularly important in the medical context because
balancing the classes in test data might distort the actual dis-
ease prevalence, yielding poor clinical risk predictions. Also,

undersampling should be used cautiously in the medical con-
text because it might increase the risk of overfitting [60].

Bias-variance trade-off

Finding the trade-off between bias and variance is a vital task
in ML to obtain models that generalise well (Fig. 3). Bias-
variance trade-off can be achieved by a couple of methods.
First, different algorithms with a wide range of complexity
levels along with different penalisation and regularisation
strategies might be evaluated with systematic validation
methods. Then, the one that minimises the total prediction
error is chosen. Second, some strong resampling techniques
can be incorporated into modelling. For instance, bootstrap
aggregating or bagging can be used to reduce variance.
Third, optimisation or tuning of the models with adjustments
of hyperparameters can be used. Besides, the number of
hyperparameters can also be changed in this context. Fourth,
data size can be altered to establish optimal trade-off.

Hyperparameter tuning

MLmodels include parameters and hyperparameters withwhich
modelling behaviour is configured for a given task. Parameters
(e.g., support vectors in support vector machine, and weights in
artificial neural networks) are internally calculated from the in-
put data, whereas hyperparameters (e.g., C of support vector
machine and learning rate of artificial neural network) are con-
figured externally. Practitioners of ML cannot directly interfere
with model parameters while the model operates. However, the
selection of some parameters (e.g., type of loss function) before
training is totally depended on the practitioner and peculiarities
of the data being studied (e.g., organ, disease).

Determining the best hyperparameters, which is called
hyperparameter tuning or optimisation, is also a crucial task
in ML-based modelling [61]. In hyperparameter tuning, the
aim is to find the optimal set of hyperparameters that reduces a
predefined loss function and increases the predictive perfor-
mance of the model on independent test data. In this context,
one must always question the methodology of the papers as to
the use of default hyperparameter configuration and copying
from previous related works. The most common
hyperparameter tuning strategies are manual configuration,
automated random search, and grid search.

Performance metrics

The discriminative performance of ML models is generally
evaluated using accuracy or area under the receiver operating
characteristic curve. Furthermore, sensitivity, specificity, pos-
itive predictive value, negative predictive value, and the con-
fusion matrix should be the minimum requirements in
reporting the predictive performance in the medical context.
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Table 3 Common pitfalls and recommendations for the key concepts of modelling and reporting

Study steps Key issues Common pitfalls Recommendations

Modelling Class balance • Ignoring class imbalance
• Balancing whole data

• Check for measures to prevent class imbalance (e.g.,
oversampling)

•Check if sampling strategies are done only for the training
set

Bias-variance trade-off • Lack of experiments to establish the
trade-off

• Insufficient assessment

• Check for the strategies for assessment of the trade-off
(e.g., different simple to complex algorithms, sampling
strategies, and hyperparameter optimisation)

Hyperparameter tuning • Tuning with whole data
• Using the default configuration or

copying from previous works

• Check for tuning strategies such as manual configuration,
automated random search, and grid search

• Check if tuning is done only in training or tuning set,
without data leakage

• Question if default configuration or copies from previous
works used in modelling

Performance metrics • Lack of metrics that are appropriate in the
medical context

• Reporting metrics at a single point
without addressing variability or
confidence limits

• Reporting metrics only for certain data
partitions (i.e., only for testing)

• Check if performance of algorithms is reported with
multiple metrics

• Check if relevant metrics are included for classification
tasks (e.g., area under the curve, accuracy, sensitivity,
specificity, positive predictive value, and the negative
predictive value)

•Check if relevant metrics are included for regression tasks
(e.g., R squared, mean squared error, root mean squared
error, root mean squared logarithmic error, and mean
absolute error)

• Check if the confusion matrix is presented in
classification tasks

• Check whether the class imbalance is addressed with the
inclusion of related metrics (e.g., Matthews correlation
coefficient, F1-measure, area under the precision-recall
curve, and “no information rate”)

• Check if the variability of performance is addressed (e.g.,
confidence interval, standard deviation)

• Check if metrics are reported for all data partitions (i.e.,
both for training and testing)

Generalisability • No proper generalisability assessment
• Vague or poor description of the

validation technique
• Disregarding the difference between

validation and testing

• Check whether the validation technique is clearly
described

• Check if the external validation data is a true independent
data set, by considering the inclusion of other
institutions or different scanners

• Check whether validation terminology is used correctly
Clinical utility • Reporting only discriminatory

performance as an indicator of clinical
usefulness

• Check if any statistical method for clinical utility
assessment is used (e.g., calibration statistics, decision
curve analysis)

Comparison with traditional tools • Providing no comparison with other tools
• Disregarding negative results
• Making a comparison with different data

sets

• Check whether any comparisons with traditional
modelling techniques (e.g., logistic regression) or other
qualitative or quantitative clinical radiology tools are
made

• Keep in mind that the negative results deserve to be
included in papers

• Check if comparisons are made on the same validation
sets

Reporting Sharing data • No data sharing • Recommend sharing all available data or at least feature
data, scripts used for modelling, and resultant model file

Transparent reporting • Disregarding complete transparency • Check whether every detail enough to reproduce the
study is reported

• Check if factors that limit generalisability are clearly
reported

•Recommend flow-charts and other types of illustrations if
the methodology is vague

•Recommend using an online supplementary file in case of
insufficient space in publications

• Check if a reporting guideline is used (e.g., CLAIM)

CLAIM, Checklist for Artificial Intelligence in Medical Imaging
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It is also noteworthy that the confusion matrix itself is not only
important for the calculation of other various metrics but also
for eligibility in future meta-analyses. Concordance index and
dice coefficient are other common relevant discriminative per-
formance metrics used for survival analysis and segmentation
performance, respectively. For the regression models with
continuous results, the following metrics should be included:
R squared, mean squared error, root mean squared error, root
mean squared logarithmic error, and mean absolute error.

Both for classification and regression tasks, all perfor-
mance metrics should be separately reported both for the train-
ing and testing sets because these are informative in the as-
sessment of the fitting status of models. Furthermore, in com-
parative studies such asML versus human expert reading, care
should be taken to report the same metrics while comparing
the performance of methods being used.

In the case of class imbalance, the Matthews correlation
coefficient, F1 measure, area under the receiver operating
characteristic curve, and area under the precision-recall curve
are important metrics to be included in the results.
Furthermore, a detailed evaluation of the confusion matrix
and “no-information rate” is also helpful in the assessment
of any work that suffers from class imbalance.

Metrics at a single point might be misleading in perfor-
mance evaluation. This is particularly important when dealing
with small data. Thus, the variability of performance metrics
should be reported as well. The confidence interval, standard
deviation, and standard error are common indicators of per-
formance variability.

Generalisability

Generalisability in ML can be defined as the adaptability of
models to previously unseen examples. It is assessed with two
strategies: internal validation and independent validation.
However, internal validation might lead to an overestimation
of performance. Thus, the assessment of generalisability using
an independent data set is important. For a true generalisability
assessment, independent validation set must correctly represent
the actual population of interest, for instance, in terms of disease
prevalence and demographics, etc. It is very common to en-
counter a lack of transparency as to whether the independent
validation set was truly independent owing to inconsistent ter-
minology. An independent validation can ideally be achieved
by the participation of external institutions. On the other hand, it
is noteworthy that scanner-based independent validation in the
same institution could be as valuable as the institution-based
external independent validation. Validation terminology and
simplified strategies are summarised in Fig. 4.

Clinical utility

ML papers usually focus on performance metrics in the assess-
ment of the diagnostic value of the method proposed.
Assessment for clinical utility is often disregarded in ML-based
classification tasks. Therefore, the claims about the improved
predictive performance of ML tools in classifications remain
uncertain and weak. The most common tools for this purpose
are calibration statistics [62] and decision curve analysis [63].

Fig. 3 Bias-variance trade-off and related concepts. (a) In simple terms,
bias and variance are simply prediction errors. Bias is the difference
between predictions (black dots) and actual values (light blue areas) that
occurs when prediction models are prejudiced. Variance, on the other
hand, is the level of variability and spread between predictions (black
dots) and actual values (light blue areas). (b) If an algorithm is too com-
plex, it may learn noise in training data, leading to good training and poor
test performance, which is called overfitting. If an algorithm is too simple,
it may not learn important aspects of data, leading to poor performance in
training and testing, which is called underfitting. There is an opposite

relationship between bias and variance. If one increases, the other one
decreases, or vice versa. Suboptimal bias-variance trade-off leads
overfitting or underfitting. High variance leads to overfitting, whereas
high bias leads to underfitting. Finding trade-off between bias and vari-
ance is an important task in machine learning modelling to obtain models
that generalise well. Usually, what matters is the total error, not particular
items like bias and variance. In practice, there is no single analytical
method to find optimal trade-off zone. In finding trade-off, it is critical
to experiment with different model complexity levels to find the one that
minimises overall error most
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Calibration statistics is the process in determining whether
the predicted probability scores match with the actual proba-
bility scores. Rather than categorical outputs of ML models
such as benign versus malignant, the use of probability scores
for each target class might be much more useful in radiolog-
ical decision-making, providing confidence in the diagnosis.
A clinically useful model should be well-calibrated, having a
balance between real and predicted probability scores. A cal-
ibration plot can be used to better present the calibration of the
models (Fig. 5).

Decision curve analysis provides complementary informa-
tion about the net benefits of the model proposed [63, 64].
This is a powerful clinical tool because it takes into account
both discriminatory predictive performance and calibration of
the models. A simple decision curve example and its basic
interpretation are presented in Fig. 6.

Comparison with traditional tools

As for all newly emerging techniques, the usefulness ofML in
radiology should be assessed through comparisons with the
traditional methods. Unless a new ML technique offers im-
provements over traditional methods, it is not intuitive to pro-
pose that technique for clinical usage. Therefore, ML papers
should include relevant comparisons with traditional statistical
modelling or clinical tools. Otherwise, reporting the ML re-
sults in isolation would not reflect and influence the clinical
practice, limiting our ability to deploy in real-world health-

care practice. Potential targets for comparisons would be tra-
ditional modelling techniques such as logistic regression and
other clinical tools (e.g., qualitative expert readings) that have
already been used in daily radiology practice. Such

Fig. 4 Simplified validation strategies in machine learning. In general,
machine learning projects include three data partitions: training,
validation, and testing. The training set is iteratively used to establish
optimal parameter values that are special to each machine learning
algorithm. Internal performance of the model is evaluated through a
validation set (i.e., tuning set). Following many iterations of training
and validation, the model is fed to unseen test data for its final
performance evaluation. (a) Splitting data into training and testing sets.
If the testing set includes instances from the same institution or same
scanner, the method is called hold-out. If it comes from another
institution or another scanner, the method is called independent. The
training set includes other validation or sometimes testing parts. The
training part should be used in dimension reduction, model

development, and hyperparameter tuning. The testing part must be
locked at the beginning of the study, to prevent bias in performance
evaluation. (b) Cross-validation. This method has no overlap among the
validation parts. The validation part can be a proportion of data (e.g., ten-
fold cross-validation) or a single instance (i.e., leave-one-out cross-vali-
dation) in each sampling. (c) Random sampling. This method has over-
laps among validation parts. On the other hand, its major strength is the
number of iterations that is much more than that of simple cross-valida-
tion. Most common techniques with random sampling are bootstrap val-
idation and random subsampling, with a key difference in replacement
technique. (d) Nested cross-validation. Being rather a complex method, it
includes separate testing parts, without overlap. Thus, it simulates previ-
ously described hold-out method. V, validation

Fig. 5 Calibration curve for classification tasks. 45° line of the plot
defines perfect calibration. Lines of well-calibrated models (a) lie as close
as to the 45° line, whereas it is the exact opposite for poorly calibrated
models (b)
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comparisons should be made on the same data sets. While
making comparisons, potential negative results are also as
valuable as the positive results and should be reported in the
publications.

Key concepts of reporting

Common pitfalls and recommendations for reporting are
summarised in Table 3.

Sharing data

Sharing data is important for replicability, proper quality as-
sessment, and improvement of the proposed methodology.
However, most research papers do not share their relevant
data. This could be because of a few reasons. The authors
might not be aware of the importance of data transparency.
They might want to protect their data from potential misuse.
Furthermore, they might even have a fear of falsification or
negative comments from other researchers.

Authors of ML papers in radiology should consider
sharing their image data, feature data, scripts used for
modelling, and resultant model file. Sharing image data
might be difficult due to the high volume and technical
issues along with ethical and privacy-related concerns
[65]. However, feature data, code scripts, and model files
can be easily shared using online repositories.

Transparent reporting

Considering the abundance of easy-to-use and open-source
toolboxes, it has never been so easy to develop an ML model
for a given medical task. In such an environment, transparent
reporting in every part of the study is the key to maintain the
quality and replicability of the studies. Besides, the factors that
limit the generalisability of an ML model to a certain case
should not be ignored and must be transparently reported.

Adhering the checklists or guidelines would be the best
practice in transparent reporting. Recent seminal work pro-
duced a significant checklist called CLAIM (Checklist for
Artificial Intelligence in Medical Imaging) that is particularly
designed for reporting the artificial intelligence–based re-
search in the field of medical imaging [66]. Also, one can
benefit from the following references for the same purpose
[67–69].

Conclusions

In this paper, we systematically provided the key methodolog-
ical concepts of ML to improve the academic reading and
peer-review experience of radiology community. Although
the recommendations given in this paper are not exclusive
and do not guarantee an error-free evaluation, we hope it will
serve as a guide for high-quality assessment.
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