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A computer simulation has been used to calculate the effects of
J coupling on the amplitudes of echoes produced by CPMG se-
quences. The program computes the evolution of the density ma-
trix for different pulse intervals and can predict the signals ob-
tainable from spin systems of any size and complexity. Results
from the simulation confirm the prediction that a decrease in the
effects of J coupling is largely responsible for the bright fat signal
seen in fast spin echo imaging at high pulse rates. The effects of J
coupling on CPMG echotrains are examined for A;B, and A;B,C,
spin systems over a wide range of J coupling and chemical shift
values and pulse spacings. The effects of J coupling on the point
spread function obtained with fast spin echo imaging are also
discussed. © 1999 Academic Press
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INTRODUCTION

Spin-echo (SE) imaging possesses considerable flexibil
for manipulatingT, and T, tissue contrast and is often con
sidered to be the reference standard by which other MR im
ing techniques are judged. Since the introduction of fast spi
echo (FSE) imaging, in which several echoes that are phé
encoded to different degrees are acquired following each
citation, numerous papers have been published directly c
paring the characteristics of FSE images to those of conv
tional SE images1-3). These studies have shown that FS

images provide similar degrees of control over and T,

contrast as SE images, as well as comparable tissue diffe
tiation and image detail2j. However, when FSE images ar
acquired with particularly rapid pulse rates, the signals fro
tissues such as fat and the substantia nigra are much brig

(0]

r

(4, 1)), pork fat @), and bone marrowl@). These studies all
find an increase in the signal frodacoupled nuclei as the pulse
spacings decrease. The theoretical explanation of this pheno
enon was provided by Allerhand, who derived an expressic
for the CPMG signal frond coupled systemsl@). He showed
that if the spacing of the refocussing pulses was short enouc
the effects ofl coupling disappear. However, the pulse rates i
most SE and FSE imaging sequences of practical interest f
short of the strict fast pulse requirement; thus the solution i
this limit merely provides a qualitative understanding of signa
behavior. In addition, Allerhand’s equation for the signal pro:
duced in CPMG sequences outside of the ultra-fast puls
regime has closed form solutions only for simple spin system
As a result, the effects df coupling for complex spin systems,
or situations comparable to those experienced with imaiging
vivo, have not previously been analyzed quantitatively.

This paper presents the results of numerical simulations
H]f effects ofJ coupling on SE and FSE signals, as well as
experiments to verify the accuracy of the simulations. Th

%s;gqlution of Allerhand’s equation requires the construction an

anipulation of large matrices and is therefore well suited t
QS numerical analysis described here. Several papers he

&r_eviously been published describing the use of computs
EE)’_qggrams to analyze the effects of complex pulse sequenc

4-17. The simulations described here are unique because
Eﬁu‘eir flexibility in handling spin systems of arbitrary complex-
ity and CPMG sequences of any length. We used the simul
té?lr)s to study the behavior of the signal produced in multiech

sequences from a number of relevant spin systems in tissu

E;Hﬁese calculations clarify how the effect dfcoupling varies
ng chemical shift andl coupling parameters and with pulse

than in SE images. Several previous reports have proposed fhcing

the bright fat signal that occurs when short echo spacings ar

used is caused by a suppressionJafoupling effects 2-5).

The dependence of the NMR signal on the spacing of re
cusing pulses in multiecho sequences has been demonstr
experimentally in a number of complekcoupled systems,
among them: corn/vegetable/olive o#, 6—10Q, diethyl ether

n addition to showing a brighter signal from fat, FSE
images also may exhibit increased blurring and ghosting arf

fféa_cts in the phase-encode direction because the amplitudes

S?e%“ echo in an echo train are different. While these artifac
can be explained in part by tAg decay which occurs between
acquisitions of lines irk-space, they are also affected by the
modulation of the echo train by coupling. Therefore, we also

1To whom correspondence should be addressed. E-mail: john.goré@y€stigated the influence af coupling effects on the point
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spread function of FSE images.
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FIG. 1. Operators acting on the density matrix during a pulse sequ&ggpand Ruso are the 90 and 184 pulse operatorsH is the Hamiltonian of the
system and exp{iHt) is the time evolution operator.

THEORY The Hamiltonian is given by
Evolution of the Density Matrix in an FSE Sequence N S 50 ORI (6]
= =2 8l— 2 Juli- 1y 6
J coupling is a quantum mechanical phenomenon with no i e i<k e

classical analog, and therefore its effect on nuclear magnetiza-

tion must be studied using an appropriate quantum mechanical
formalism. Given that we are interested in thesemblebe- Whered; is theJ coupling constant between spinandk, and

havior of the nuclear spins, we use the density matrix to follofy 'S the chemical shift of nucleyswith respect to the average
the development of the system during the CPMG pulse dearmor frequency of the spins. A term containing the overal
quence. chemical shift of the system and terms which do not involve
The signal measured in a magnetic resonance expenmerﬁr@mlcal shift o coupling are omitted from the Hamiltonian
proportional to 18) as they do not affect the following calculations.
Combining Egs. [1] and [3] gives the final expression for the
signal:

(1) = T, (1]

wherel, is thex component of the total angular momentum S(n7) <« (I,(n7))
operator. For a time independent Hamiltonian, the time depen- o Tr[(e_i,zgfﬁ e‘”z'“) f
dence ofp, the density matrix of the system, is given by ) e x
X (e—i/2Hr|§180xe—i/2Hr) —n'l‘x]. [7]

p(t) = exp(—iHt)poexp(iAt), 2]
The effect ofT, relaxation has been omitted for clarity, but can
wherep, is the density matrix at = 0, H is the Hamiltonian pe included by multiplying the RHS of Eq. [7] by expar/
of the system and exp(iHt) is the time evolution operator. T,). Note that in Eq. [7], the time evolution operator, exj(
Therefore, the effect ofl coupling on the signal measured2Hr), is a function solely of terms containidgr ands;r. As
using a CPMG sequence can be determined by following thgesult the signal at any echo in a CPMG train depends on tl
time evolution ofp(t) through each phase of the sequencgroductsJ;r ands;r, not onJ, §;, or rindividually. Finally,

Figure 1 shows a diagram of the operators acting on the dengi{¢ contribution of a specific spirj, to the signal can be
matrix in the course of a CPMG experiment. The expressi@htained by substitutin@]xj for the finali in Eq. [7].

for the density matrix at the'th echo is (3) Equation [7] is not simplifiable becau$t and R, do not
commute. As a result, analytic solutions to this expression a
p(nT) = (ef”zmﬁlwe*mﬁf) nix(efwzﬁrﬁlwefwzﬁr)fn, exceedingly difficult to find. However, in the matrix represen:

4 tation that diagonalizes exp(/2H7) R0 eXp(—i/ 2H7), Eq.
[3] [7] becomes

wherer is the spacing between 18pulses. The operators are
S(n) o< E |<§J||X|§j>|2 +2 2 |<€J||X|§k>| CO.’:{I’]()\ - )\k)]

T>< = E IAxi [4] j<k
i [8]

and the rotation operator for the 18pulse, where the & are the eigenfunctions of exp(/
A . 2HT)Rigexp(—i/2HT), and exp(A;) are the corresponding
Rigoc = explimly). [5] eigenvaluesi3). Equation [8] can be written in the form
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M The simulations construct matrix representations of the ne
S(n) = ¢, + . ¢,codwN), [9] essary operators and then use them to solve either Eq. [7]
m=1 [8]. The details of the algorithm are discussed in the Appendi

The programs were written in MATLAB (Mathworks, Natick,

where the coefficients,, and ,, are real andMl = 2"(2" — MA), a language that is particularly well suited for simulations
m m -

1) (N = number of spins in the system). Thus, in the absent#At require substantial matrix manipulations. _ _
of relaxation, this equation shows that for a multiple spin N @ddition to calculating the signal from the entire spin
system, the amplitudes of the echoes in a CPMG train aystem, the programs calculate the contributions of individu:
modified by a large but finite number of frequencies. THRUCIEI to the overall signal. They are capable of solving Eq
values ofc,, and w,, depend solely on the relative chemical/l-{8] for spin systems of arbitrary size and complexity,

shifts (3;) and coupling constantsJ{) of the system and on  Provided the computer has enough memory to handle t
sulting 2' x 2" matrices. The only parameters needed

In the simplest case of a weakly coupled two spin system, F_ri ‘ . - . . .
[8] reduces to the familiar resuit characterize a given spin system are the chemical shifts of |

protons and their respectiviecouplings. The pulse sequence is

characterized by the pulse spacing,and the length of the
S(n) o= cogmJnr). [10] pulse sequence (on which there are no restrictions).

S(n) in the Fast Pulse Rate Limit If needed, the programs can also calculate the magnetizati

o at any time between echo peaks by solving the equations
In the limit that

" G . T
the term exp{i/2A7) can be expanded to first order in Eq. e '"'p(nr)e' t<,
[3]. As shown in Ref. 13), the chemical shift terms disappear <« o ) o ) ;o [13]
in this limit and the remaining operators commute. As aresult, | e "™'Rjge 2" p(n7)e’?" " Rigpe't t> 5

the density matrix remains constant over time and 2

. To verify the accuracy of the simulation results, the simu

S(n) = S(0) o Tr{l5]. [12]  Jated echo trains for a range 8B spin systems were com-
pared to the echo trains obtained from Allerhand’s analytice
Thus, whenr becomes sufficiently small, the echo train modsolutions for these systems. The simulation results agreed wi
ulation caused by coupling disappears. Without this modu-Allerhand’s to within 1 part per billion. In addition, we used
lation, the signal fromJ coupled spins at any echo timethe program’s ability to generate a theoretical FID (from Eq

becomes substantially greater. This is the cause of the brigljte3]), to predict the spectra of a numberAfB, systems. The

fat signal seen in FSE images. theoretical FID’s for these systems were calculated and the

Fourier-transformed to obtain their NMR spectra. The loca

COMPUTER SIMULATIONS OF tions and magnitudes of peaks in these spectra were identica
ALLERHAND’S EQUATION the theoretical spectral peaks tabulated by Emsl) or

A;B, systems with identical values dfé.

Analytic solutions for Eq. [7]/[8] have been published only In order to clarify the manner in which the effects &f
for the AB, A,B, andA;B spin systems1Q3). The pulse rates coupling depend on spin system and pulse sequence parar
in most SE and FSE imaging sequences of practical interest falls, we studied a number of hypothetical strongly couple
short of the fast pulse regime in which Eq. [7] reduces to E&;B, andA;B,C, spin systems over a wide range of values o
[12]; thus the fast pulse solution gives only limited insight int@ s (=|84 — 8g|), Jas, @andr. In addition, we simulated the SE
the expected signal behavior. and FSE behaviors of a specific molecule, 1-penten

To understand the role dfcoupling in pulse rate regimes of(CH,CH,CH,CH = CH,), which was chosen as a model for
clinical interest, it is necessary to solve Eq. [7] or [8] fothe hydrocarbon chains found in lipids. The sizes of true lipids
complex spin systems outside of the fast pulse limit. Becaustich typically contain 30 or more protons, makes simulatiol
the quantum mechanical operators discussed above canobeheir NMR behavior prohibitive—1-pentene was chosel
represented as matrices, the solution of Egs. [7]-[8] can because, as a ten-spin system, it was the largest hydrocart
converted into a matrix algebra problem that can be solvetlain that our simulation could conveniently handle. The
numerically. With this in mind, we developed a series afoupling values and chemical shifts for the protons in 1-per
computer programs that solve these equations. We then usatk were first estimated from values given in the literature fc
the programs to obtain the SE/FSE signal behavior of a numliehexene, 1-propene, and 1-bute2€,(2]). These estimates
of spin systems similar to those of biological interest. were then fine-tuned by matching the theoretical spectra the
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values ofr to illustrate the effect that this parameter has on th

il Sanuas TR e R CPMG signal. Wherr = 4 ms, the echotrain is barely modu-
: \"k.\ 7 (ms) lated. Astincreases, the degree of modulation of the echotra
0.8h "kg oood |1 steadily increases, but remains smoothly varying, as seenin't
| ®a e-oe1() 7= 10 ms echotrain. However, at= 30 ms @7 = 1.2), the
g ! '\\ oo 030) signal drops off abruptly at the first and second echoes and th
% 0.6 Y 1 varies unpredictably.
= % ‘e The dependence shown in Fig. 2 of the echotrainras
\% ! ° "\.\ representative of the behavior seen in all of our simulation:
0.4 ‘\ ¢ ‘h e \.,‘ ] Above a threshold of which depends on the values dfand
i TR f’ ! a2 6 in the system, the behavior of the echotrain is erratic an
0.2 ! 50 Y - ”'\_ *e ¢ difficult to characterize. Below this threshold, the echotrair
! ? ] P Yon @ % varies smoothly, its modulation decreasingratecreases. The
Lo vF ot L transition between the regimes of smooth and erratic modul
o d : \y g
0 . 2 tion is very abrupt: in thé\;B, spin system discussed above,
0 10 20 30

the transition occurs between= 20 and 21 ms.

The transition from smooth to erraticcoupling modulation
FIG. 2. The effect ofJ coupling on a strongly coupledisB, spin system. Can be bestunderstood _by analyzing the cosmusmdal terms tl
The plot shows signal vs echo number for CPMG sequences whate Make up each echotrain (Eq. [9]). Becausen Eq. [9] is
spacing between echoes, is 4, 10, or 30dps.= 40 Hz,J,s = 6 Hz. Intrinsic  restricted to integer values, timth component of the signal,

T, relaxation is neglected. These three curves illustrate the general tenden%gg(wmn) is sampled at a rate ofidw,, points per period. As
J coupling modulation to fall into one of 2 regimes: smooth or erratic

) @, increases, cos(,n) becomes less smoothly sampled:
modulation.
above a threshold of roughly,, = #/3, a plot of cosfn)

ceases to look cosinusoidal. As a result, any component of tl

. . echotrain which oscillates above,, = #/3 will make an
E;%il:i%zdt;% i-r;gz;;izo:)urg?;n(sg;ai%igglr:n (thle;&%nit;&?;( erratic contribution to the signal. Figure 3 shows the norma
to D, F is trans), the chemical shift values obtained weég:
= .91 ppm,ég = 1.41 ppm,é:. = 2.02 ppm, 6, = 5.80
ppm, 8¢ = 4.93 ppm, andd: = 5.00 ppm. TheJ coupling T

echo number (77)

values werdl, = 7.5 Hz,Jge = 6.5 Hz,Joo = 6.3 Hz,Jee 0| 7=10 ms
= _1.2 HZ!‘]CF = _1.6 HZ,JDE = 10 HZ,JDF = 17 HZ, 2
andJg = 2.5 Hz. S

0.2
In addition to the computer simulations, the SE and FS

signals from 1-pentene were measured experimentally. Me
surements of 1-pentene samples contained in 8-mm testtu

were performed at 2.0 T on a GE Omega imaging spectrol 0 /4 /2 3/ T
eter. w,, (rad/echo)
0.2
SIMULATION AND EXPERIMENTAL RESULTS 1
7= 30 ms
For the simulation data shown below, the absolute value
the signal is shown relative to its value in the absencd of & 0.1}
coupling. The figures show the effectsbtoupling only; the
additional decay due to intrinsi€, relaxation is omitted for [ I
Clarlty 0 T 5 Le T o 2 ? e %% 0., pe -
0 /4 3m/4 T

/2
A;B, Systems w,, (rad/echo)
Figure 2 shows the effect df coupling on the echotrains of FIG. 3. The normalized amplitudes of the frequency components of the
a strongly coupledd;B, spin system with,s = 40 Hz and = 10- and 30-ms echotrains shown in Fig. 2. The 10-ms echotrain has a lar
J.e = 6 Hz. Thesel coupling and chemical shift values aré,mmodula'[ed component as well as a few low frequency components. Ti

. . . . fesult is a smoothly varying echotrain. The range of frequencies contributin
representative of those found in hydrocarbon _Chams at2 T he CPMG signal increases steadily with increasingnd the size of the
system thus models the GBH, spin groups typically found at ynmodulated component decreases. The presence of terms wherer/3

the end of hydrocarbon chains. Echotrains are shown at theaeses the erratic modulation of the 30-ms echotrain.
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much larger in the 10-ms echotrain. In generaly &screases,
the unmodulated component of the echotrain decreases and
range of frequencies represented in the echotrain becorr
steadily broader. A similar broadening (of the range of fre
quencies contributing to the echotrain) occurs as any values
J or § in a system increase.
In Fig. 3, the number of frequency components in botl
echotrains is 29. This is substantially smaller than tH@°2—
1) possible combinations @f,, = |A; — A,| because many of
the differences have the same value or are zero. Furthermo
becausen must be an integer, cas(,n) = cos[(2r — w,)N].
Therefore, allw,, falling between {r, 27] can be mapped to
2T — wn.
Figure 4 shows the CPMG signal & = 120 ms, as a
0 0 ] 5 function of . The relative signals were calculated for a set o
10 tl([r}ns} 10 A;B, spin systems witld,; = 40 Hz andJ,z = 2 to 14 Hz.
When is short, the signal drops off smoothly as eitesr 7
5 F'f-446 HSF;'\rE Sig_”a;’vg'fl: lezg rr:;rS] V:;f?rgﬁq Sfttgf?;gz nS])S/Stpeﬁm—s ‘fgh increases. However, between= 10 and 30 ms (depending on
138 20, or 30 ms (?ca)t] = 14, 10, 6, or 2gHz, respectively), the depend;ancJ)’.the curve; change abruptly from b.emg smOOt.th varying t
of the signal onr abruptly becomes unpredictable, reflecting a transition intEemg unpredictable. The signal loss in the erratically couple
a regime of erratidd modulation. regime is much less dependent on the valued of 7. This
again reflects the unpredictable manner in whichoupling
modulates the echo train for largerNote that the value of
ized amplitudesg,,, and frequenciesy,, of the components at which the transition to erratic modulation occurs does nc
of the 7 = 10 and 30 ms echotrains shown in Fig. 2. Clearlyary linearly with 10—this is because the value 8fs7 also
many of the significant terms contributing to the 30 ms echdetermines when this transition occurs.
train oscillate at frequencies well abowé3 and thus will not ~ The simulations suggest that becadseoupling can cause
be smoothly sampled. The only substantial contributions to ttige signal in an echo train to fall off dramatically, its effects
10-ms echotrain come from a handful of low frequency conmimic those ofT, relaxation, although the decay is clearly
ponents: these terms make a smoothly varying contributionrionexponential. In order to estimate an “effectivie’ for an
the modulation. In addition, the zero frequency componentégho train, we fit the initial monotonic portion of the signal

120 ms

RelativeSignal at TE

a |{ I ' b ¢ l l l '
2 6AB =40 Hz 6AB = 40 Hz
10 [ o JAB=6HZ ¥ ° ‘L‘=15mS
— ox‘o“'v @102' o ]
Z g
gl ° =
10 "o 1 T
0.
5’*9
SN o
100 1 ° 101 , , \ . ° Q
10 20 30 40 4 8 12 16 20
7 (ms) Jap (Hz)

FIG. 5. “Effective” T, as a function ofr andJ for echo trains ofA;B, systemsT.. was estimated by fitting the initial portion of each echo train to an
exponential decay. In (&), = 6 Hz andr = 10 to 40 ms, while in (b)r = 15 ms and) = 2 to 20 Hz. As eitherr or J increasesT . decreases at an
approximately exponential rate.
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1 i i i 1-pentene
AsB,Cy Simulated and experi i -
perimental echotrains for 1-pentene a
ost \ shown in Fig. 7 forr = 2, 12, 16, and 20 ms. To match the
==y =0 experimental setup, the simulations were run assuming a fie
/=1 strength of 2 T. At each value af the simulated and experi-
=06 vrvf.=3 mental echotrains exhibit nearly identical oscillations, thoug
= veo) = [ the oscillations of the simulated echotrains are more exagge
= . ated. Both sets of echotrains show the same general featu
= 0.4} .—: . seen in theA;B, data: the echotrain is nearly unmodulatec
i A Ty whent = 2 ms and becomes more modulated-&sreases. A
R e alt N transition between smooth and erratic modulation occul
5 % ’ >
0.2 el . ot g Y aroundr = 20 ms. The disparity between the amplitudes of the
—<A,B, R modulation of the simulated and experimental data may ari
0 i ; ; from effects such as stimulated echoes (from using imperfe
0 5 10 15 20 refocusing pulses in the experimental measurements), or c
echo number () herence transfer cross-relaxation phenomena, which are 1

FIG. 6. The effect of additionall coupled spins on a system. For theaccounted for in the simulations.

A3B,C, spin systemsd g = 8ac = 40 Hz,Js = 6 Hz, andJ,c = 0 Hz. An

A;B, e_chotraln with identical values oﬁAB_ and J,s is also shown for DISCUSSION

comparison;r = 20 ms. TheA;B,C, echotrains become more modulated as

Jgc increases, though they are not as strongly modulated &s;Bieechotrain ) ) ) ) )

due to the near-equivalence of tBeand C spins. The erratic echotrain behavior observed in our studies

A;B, systems and 1-pentene has also been observed exp
mentally in studies of diethyl ether, a strongly coupkeB,
%g/estem 4, 11). However, measurements of the pulse spacin
dependence of lipids such as corn oil and pork fat have four
a smooth pulse spacing dependende6( 8, 10. The differ-
ences between the CPMG signal behavior of lipids and syster
such as 1-pentene may arise from the longer chains of satura
methylene (CH) protons in lipids. The chemical shift differ-

ces between these neighboring methylene groups are v

all and, as Fig. 6 demonstrates, this can lead to a dampen
of the effects ofJ coupling.

decays to an exponential curve. The results of these fits
shown as a function of andJ g in Fig. 5. For anA;B, system
with J,s = 6 Hz andd,; = 40 Hz, Fig. 5a shows thak .
drops at a roughly exponential rate asincreases. Similar
behavior is seen in Fig. 5b, fdr, vs J. Both figures dem-
onstrate that the effective, can be very short<{100 ms). As
a result, in strongly coupled systems, the effectd obupling
may dominate the decay of transverse magnetization in CP
sequences, so that the apparépntof protons in even simple
molecules reflects coupling rather than relaxation.

A;B,C, Systems The Point Spread Function of J Coupled Echotrains

Figure 6 shows the relative signal of the echo trains of a setT, decay occurs during the acquisition of data in a CPMC(
of A;B,C, spin systems, wher&,s = §,c = 40 Hz,J,; = 6 experiment, so successive echoes (and hence different lines
Hz, J,c = 0 Hz, andr = 20 ms. (TheB andC spins are not k-space in FSE) have smaller amplitudes. This effect alone c
magnetically equivalent becaudg; # Jac.) Jsc ranges from cause blurring in the phase encode direction of an imag
0 to 6 Hz. For reference, the solid gray curve shows the sigr{al 23, 24. The presence af coupling induced modulation in
decay of amA;B, system with identical values &,z andJ,s. the echotrain will further affect the image point spread functiot
When Jgc = 0, the A;B,C, echotrain contains the same(PSF), as has been demonstrated for weakly coupled sy
frequency components as thgB, echotrain, but, except for systems [Chao, 1997 #96; Duyn, 1995 #95]. In this section w
the zero frequency component, the amplitude of each compterive expressions for the PSF due to the effectsadupling.
nent is smaller since two of the seven spins do not contributeAssuming that the phase encode directiog,ithe signal in
to the modulation. The presence of the uncoupled spins in this FSE image can be written as the convolutid4) (
system thus dampens the overall effectd abupling. AsJgc
increases, theA;B,C, echotrains become more modulated,
especially at lower frequencies, though they are still not as
strongly modulated as th&;B, echotrain. Becaus&g. = 0,
the B andC spins approach magnetic equivalence, and so tivaereh, is the point spread function (PSF) dueltooupling,
J coupling between them is less apparent than that betweenltheis the PSF due td, decay, and is the signal in a SE
A andB spins. image of the same regiohyc is given by

fese( X, Y) = hyc(y)#hp(y)*fs(( X, y), [14]
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T=2ms =12 ms

0.6}
04

0.2 CER IR i......._.........

0 50 100 0 200 400

T=16 ms T=20ms

0.6

0.4 s R S s e s e e

0.2

% 200 400 0 200 400

FIG. 7. Simulated and experimental echotrains for 1-pentene fer2, 12, 16, and 20 m8, = 2 T. The echotrains again show a transition from smoott
to erratic modulation as increases. Conversely, aglecreases, the effects dfcoupling disappear.

. schemes which use a greater number of excitations. Inserti

hyc(y) = J Sn(k,)Je "vdk, Eq. [16] into [15] yields

M w M

= 2 CmJ COiwmn(ky)]e_ikyydky, [15] hJC(y) = E Cm|: ™ Coiwm)8(|y| - ym)
m=0
m=0 Cw»
: Ym
. . + 2 sin(wy) 22] : [17]

wherec,, andw,, are the coefficients used in Eq. [9] (whesg Y* = Ym

= 0), n is the echo number, arld denotes the position along

the phase encode axis lofspace. The PSF will clearly dependyhere

onn(k,), which defines the order in which phase encode steps

are acquired. One possible ordering scheme, where positive

and negative values d&f, have the same dependencergris Ym
shown in Fig. 8an(k,) is given by

= w/AK, = wyl/m,

and 2 is the field of view of the image in the direction.
n=1+|k|/Ak, — Kymax= K, = Kyma [16] A monotonic trajectory (such as for a single excitatior
sequence) may also be used, where

Equation [16] describes an imaging scheme which uses two
spin excitations to fillk-space, but can also approximate n = ny + K/AK,, [18]
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a n CONCLUSION

The computer simulations described in this paper have pri
vided a powerful tool to examine the effects btoupling in
a variety of spin systems. They demonstrate that in general, f
Y pulse rates typical of conventional spin echo sequences, t
ky presence of] coupling in a system dephases the transvers

magnetization substantially. As the values Jaf and &7 in-

b crease, the effect of coupling progresses from a slight signal
attenuation to severe and erratic signal dephasing. The ray
dephasing and erratic modulation are caused by the interfe
ence of the large number of discrete frequencies which mo
ulate the echotrain. In the erratic dephasing regime, the sigr
loss at a specific echo in the train can be as high as 99% relati
to the decoupled signal, and this loss may already be appar:
in the second or third echo.

Conversely, when the CPMG echo spacing is very short, tt
-l Ym Vi [ J coupling modulation disappears and lipid signals becom
bright. A modification of the FSE sequence has recently bee
suggested which suppresses this lipid signal by exploiting tt
dependence of coupling effects on pulse spacings, 29. In
the DIET sequence, the first refocusing interval is made long
than subsequent refocusing intervals. This allows a great
mixing of coupled spins during the first echo, which leads t
dephasing and hence signal attenuation.

APPENDIX

FIG. 8. (a) The phase encode ordering for the FSE acquisition scheme Simulation Algorithm
described by Eg. [16]. (b) The contribution of a modulation at frequengy . . L
(wherew,, = 7/3) to the PSF of an FSE image, assumingritie,) shown in To solve Egs. [7]-[8] using matrix operators, it is first
(a). The arrows at-y,, denote Diracs functions of magnituderc,,cos@,). Necessary to construct an appropriate set of basis states
represent the system. The most numerically convenient set

, ) basis functions were the eigenstates of the Zeeman Hamilt
andn, is the echo at which the zeroth order phase encode SieBn

is acquired. In that case,

N
M ~ ~ ~
o A= o, = o, 31, 21
hice(Y) = 2 Colm cOL0n10)3(]y] = Vi) + i SIN(wo) Gole T @ El ! (2]
m=0
X [8(y — ym) — 8(y + ym 1} [19] whereN is the number of spins in the system angis the z

component of the angular momentum operator for nucjeus
The imaginary terms result from the fact tingk,) is not even. The basis set is an orthonormal set of simple product waw:
A plot of Eq. [17] for a single value ok, is shown in Fig. functions representing all possible combinations of the eige
8b. Note that because® w,, = m, the limits ofy,, are [0,1].  states, denotefd+) and|—), of 1,; for each individual nucleus,
Thes functions atty,, in the PSF will introduce image ghosts;j. In an N-spin system there are2possible combinations of
with the J coupled portions of the image shifted Byy,,. The the|+) and|—) states.

terms of the formy,/(y* — yr) resemble approximations of Each product state is represented bjNaterm vector, where

*£5'(y — Ym) (where’ denotes the derivative). Since thejth element in the vector describes the state of gp“1”
signifies the spin is in thetr) state, while a “-1” signifies the
f(y)=8" (y — Ym) = ' (Y — Ym), [20] spinisin the —) state. The entire set of product wavefunction:s

is stored in a 2 X N matrix, P, where each row represents a
the effects of convolution with these terms resemble ghostss#parate product wavefunction. For a 2-spin system, the mat
the derivative of the) coupled regions. of product wavefunctions?, looks like
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1 1 [+ +) The operator therefore flips every spin state in a produ
B 1 -1 [+—) wavefunction. In a 4-spin system,
-1 -1 == Rigo +—++) = [—+——). [28]
If the product wavefunctions are denotéa},), wherem = To construct the matrix representationfblfgm, the simulation
, 2, then compares each pair of wavefunctions and assigns a valile of
only when the spin states {,,) and|a,) are exactly opposite
Azj|am> — 1P, jan) [23] one another. For a 2-spin system,
where the eigenvalues are given in unitsiof 0 0 0 -1
. . e . . 0 0O -1 o
The basis functions are not used explicitly in solving Eq. [7], R = [29]
. ; A 2 0 -1 0 0
but are needed to form matrix representations ofl the, g, 1 0 0 0

and H operators. The matrix representation of each operator

can be constructed usin . . . :
¢ The final matrix needed to solve Egs. [7]-[8] is the Hamil-

] - tonian,
an = <am|x|an>y

whereX is a quantum mechanical operator and the symbol i
denotes “is represented by.”

The operatoli, is equal toX T,;, where the effect of,; on  The values oB; andJ,, are contained in X N and anN X
a given wavefunction is to reverse thh spin state. Conse- N matrices, which can be read from an input file. The do

quently,i, generates a series Mfproduct wavefunctions, eaChproductl - T in the Hamiltonian can be expanded to gig&)(
differing from the original in only one spin state. In a 2-spin

system, for example, o

Ij : |Ak = ijokz % (T +Tk + Ij—|k+) [31]
L+ = {[=+) + [+)}2. [25] 7. andi_ are the raising and lowering operators, where
The product functions, |f,)}, are orthonormal; therefore T+|+> =0 |“_|+> =|-)
when Eq. [24] is applied to construct the matrix representation . _ . _ [32]
of I, in the Zeeman basis,., = 3 only if |a,) and|a,) differ L[=y=1+) T|=)=0.

in one (and only one) of their spinstates.rf@o2 spin system, .
Thel;.l,_ operator only returns a nonzero product state whe

thej nucleus is in thé—) state and th& nucleus is in thé+)

|+0+> |+1_> |_1+> |_0_> ++) state. The reverse is true for tHe i,, operator. Viewed
1 1 0 0 1 1+ toggther th_e final _2 tgrms of _[31] only affect _produ_ct state:
I, = 5 1 0 0 1 - 1) having a pair of spins in opposite states. Th_e S|m.ulat|c_)n ther
0 1 1 0 - fore looks for pairs of wavefunctions which differ in the

[26] spinstates of two (and only two) of the nuclei, and then check
if these two nuclei have spinstates which are opposite or

. nother. For pairs of product functions meeting the abov
The product states are shown along the sides of [26] to clar Hteria, P P g

their ordering. It is also possible to calculate matrix represen-
tations oflxj, which are needed if one would like to calculate

the contribution of thgth nuclei to the signal. The nonzero Hinn = =3 Jji, [33]
elements ol ,; are those connecting wavefunctions that differ
solely in thejth spin state. wherej andk are the nuclei with opposite spin states. All othel

The 180° rotation operatoﬁlw, can be written in the form off-diagonal terms are zero. Finally, the diagonal elements ¢
H are given by

N

ARlSOx = (Zi)N H Txj- [27] Hom= _% Z 8ijj - % E ijijPmk- [34]

-1 i j<k
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Once the matrix representations of tf])g ﬁmo“ and ﬂ 11. R. S. Hinks and R. M. Henkelman, Problems with organic materials
operators are formed, the calculation of the density matrix (and for magnetic resonance imaging phantoms, Med. Phys. 15, 61-63
hence the solution of Eq. [7]) at amyis straightforward. (The (1988). . S o
calculation of exp¢i/2H7) and the multiplication and inver- 12 - A- Wright and A. Macovski, Lipid Signal Enhancement in Spin-

. . . . . Echo Trains, in “Proc., Society of Magnetic Resonance in Medicine
sion of matrices are simple procedures in MATLAB.) Equanpn 11th annual meeting,” p. 437 1992.
[8] C_an also be SOIV?d by first CalCUIatmg th? tranSformatloﬂ. A. Allerhand, Analysis of Carr-Purcell spin echo NMR experiments
matrix that d|agonal'zes eXNIZHT)R eXp(_'IZHT)- We on multiple-spin systems. |. The effect of homonuclear coupling,
should note however that the transformation matrix generated J. Chem. Phys. 44, 1-9 (1966).
by MATLAB will not necessarily be orthonormal if exp(i/ 14 L. E. Kay, J. N. Scarsdale, D. R. Hare, and J. H. Prestegard,
2HT)R exp(—i/2H7) has degenerate eigenvalues. In such Simulation of two-dimensional cross-relaxation spectra in strongly
cases, an orthonormal subset of eigenvectors must be createdoupled spin systems, J. Magn. Res. 68, 515-525 (1986).
for each degenerate eigenvalue. 15. P. Guntert, N. Schaefer, G. Otting, and K. Wiuthrich, POMA: A
complete Mathematica implementation of the NMR product-oper-
ator formalism, J. Magn. Res. Ser. A 3, 27-45 (1993).

ACKNOWLEDGMENT
16. B. K. John and R. E. D. McClung, Computer simulations of multi-
This work was supported by Grant CA40675 from the NIH. ple-pulse and two-dimensional FT NMR experiments, J. Magn.
Res. 58, 47-61 (1984).
REFERENCES 17. J. Shriver, Product operators and coherence transfer in multiple-
pulse NMR experiments, Concepts Magn. Reson. 4, 1-33
1. R.V.Mulkern, S. T. S. Wong, C. Winalski, and F. A. Jolesz, Contrast (1992).
manipulation and artifact assessment of 2D and 3D RARE se- 18. C. P. Slichter, “Principles of Magnetic Resonance,” Harper and
quences, Magn. Reson. Imaging 8, 557-566 (1990). Row, New York (1963).
2. P. S. Melki, R. V. Mulkern, L. P. Panych, and F. A. Jolesz, Com-  19. J. W. Emsley, J. Feeney, and L. H. Sutcliffe, “High Resolution
paring the FAISE method with conventional dual-echo sequences, Nuclear Magnetic Resonance Spectroscopy,” Pergamon Press,
J. Magn. Reson. Imaging 1, 319-326 (1991). Oxford, UK (1965).
3. R T. anstable, A. W Andersqn, J. Zhong,.and J C. Gore, Factors 20. A. A. Bothner_By and C. Naar-Colin, The proton magnetic reso-
influencing contrast in fast spin-echo MR imaging, Magn. Reson. nance spectra of olefins. I. Propene, butene-1 and hexene-1,
Imaging 10, 497-511 (1992). J. Amer. Chem. Soc. 83, 231-236 (1961).

4. R. M. Henkelman, P. A. Hardy, J. E. Bishop, C. C. Poon, and D. B. 21y w. Quinn, J. S. Mclintyre, and D. J. Peterson, Coordination
Plewes, Why fat is bright in RARE and fast spin echo imaging, J. compounds of olefins with anhydrous silver salts, Can. J. Chem.
Magn. Reson. Imaging 2, 533-540 (1992). 65, 2896-2910 (1965).

5. J. Listerud and R. V. Mulkern, The J coupling hypothesis for bright 29
fat observed on FSE, in “Proc., Society of Magnetic Resonance in
Medicine 11th annual meeting, New York City,” p. 4505 1992.

6. P. S. Melki, F. A. Jolesz, and R. V. Mulkern, Partial RF echo-planar

. “The Aldrich Library of 13C and 1H FT NMR Spectra,” Aldrich
Chemical Co., Milwaukee, WI (1993).

23. J. Hennig, A. Nauerth, and H. Friedburg, RARE imaging: A fast

imaging with the FAISE method. Il. Contrast equivalence with spin- 'T;géng method for clinical MR, Magn. Reson. Med. 3, 823-833
echo sequences, Magn. Reson. Med. 26, 342-354 (1992). ( ) ) ) )
7. S. Peled, D. S. Wiliamson, and R. V. Mulkern, Signal intensity 24. RT Constable ar_1d J_.C.Gore, The loss of small objects in variable
TE imaging: Implications for FSE, RARE, and EPI, Magn. Reson.

studies of strongly-coupled spin systems during CPMG/RARE im-
Med. 28, 9-24 (1992).

aging sequences, in “Proc., Society of Magnetic Resonance Third

Scientific Meeting, Nice, France,” p. 655 1995. 25. H. Kanazawa, H. Takai, Y. Machida, and M. Hanawa, Contrast
8. D. S. Wiliamson, R. V. Mulkern, P. D. Jakab, and F. A. Jolesz, naturalization of fast spin echo imaging: A fat reduction technique
Coherence transfer by isotropic mixing in Carr—Purcell-Meiboom- free from field inhomogeneity, in “Proc., SMR, 2nd Meeting, San
Gill imaging: Implications for the bright fat phenomenon in fast Francisco,” p. 474 1994.
spin-echo imaging, Magn. Reson. Med. 35, 506-513 (1996). 26. L. A. Stables, R. P. Kennan, R. T. Constable, and J. C. Gore,
9. R. S. Hinks and D. Martin, Bright fat, fast spin echo, and CPMG, in Analysis of J coupling induced fat suppression in the DIET se-
“Proc., Society of Magnetic Resonance in Medicine 11th annual quence, in “Proc., ISMRM, 6th Scientific Meeting, Sydney, Austra-
meeting,” p. 4503 1992. lia,” p. 1949 1998.
10. B. K. Rutt and G. A. Wright, Lipid signal enhancement in CPMG  27. R. K. Harris, “Nuclear Magnetic Resonance Spectroscopy: A
MRI: Effect of field strength, in “Proc., Society of Magnetic Reso- Physiochemical View,” Longman Scientific & Technical, Harlow

nance in Medicine 11th annual meeting,” p. 4504 1992. (1986).



	INTRODUCTION
	FIG. 1

	THEORY
	COMPUTER SIMULATIONS OF ALLERHAND’S EQUATION
	FIG. 2

	SIMULATION AND EXPERIMENTAL RESULTS
	FIG. 3
	FIG.4
	FIG. 5
	FIG. 6

	DISCUSSION
	FIG. 7
	FIG. 8

	CONCLUSION
	APPENDIX
	ACKNOWLEDGMENT
	REFERENCES

